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Abstract—We propose two robust methods for anomaly detec-
tion in dynamic networks in which the properties of normal traffic
are time-varying. We formulate the robust anomaly detection
problem as a binary composite hypothesis testing problem and
propose two methods: a model-free and a model-based one,
leveraging techniques from the theory of large deviations. Both
methods require a family of Probability Laws (PLs) that represent
normal properties of traffic. We devise a 2-step procedure to
estimate this family of PLs. We compare the performance of
our robust methods and their vanilla counterparts, which assume
that normal traffic is stationary, for two types of typical traffic
patterns. We validate our methods using synthetic traffic traces
obtained from a software tool we have developed for this purpose.
Simulation results show that our robust methods perform better
than their vanilla counterparts in dynamic networks.

Index Terms— Robust statistical anomaly detection, large de-
viations theory, set covering, binary composite hypothesis testing.

I. INTRODUCTION

A network anomaly is any potentially malicious traffic se-
quence that has implications for the security of the network.
Although automated online traffic anomaly detection has re-
ceived a lot of attention, this field is far from mature.

Network anomaly detection belongs to a broader field of
system anomaly detection whose approaches can be roughly
grouped into two classes: signature-based anomaly detection,
where known patterns of past anomalies are used to identify
ongoing anomalies [1, 2], and change-based anomaly detection
that identifies patterns that substantially deviate from normal
patterns of operations [3, 4]. [5] showed that the detection
rates of systems based on pattern matching are below 70%.
Furthermore, such systems cannot detect zero-day attacks, i.e.,
attacks not previously seen, and need constant (and expensive)
updating to keep up with new attack signatures. In contrast,
change-based anomaly detection methods are considered to be
more economic and promising since they can identify novel
attacks. In this work we focus on change-based anomaly
detection methods, in particular on statistical anomaly detection
that leverages statistical methods.

Standard statistical anomaly detection consists of two steps.
The first step is to learn the “normal behavior” by analyzing
past system behavior; usually a segment of records correspond-
ing to normal system activity. The second step is to identify
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time instances where system behavior does not appear to be
normal by monitoring the system continuously.

For anomaly detection in networks, [4] presents two methods
to characterize normal behavior and to assess deviations from
it based on the Large Deviations Theory (LDT) [6]. Both
methods consider the traffic, which is a sequence of flows, as
a sample path of an underlying stochastic process and compare
current network traffic to some reference network traffic using
LDT. One method, which is referred to as the model-free
method, employs the method of types [6] to characterize the
type (i.e., empirical measure) of an independent and identically
distributed (i.i.d.) sequence of network flows. The other method,
which is referred to as the model-based method, models traffic
as a Markov Modulated Process. Both methods rely on a sta-
tionarity assumption postulating that the properties of normal
traffic in networks do not change over time.

However, the stationarity assumption is rarely satisfied in
contemporary networks. For example, it is well known that the
Internet traffic of weekdays and weekends is very different [7].
Internet traffic is also influenced by macroscopic factors such
as important holidays and elections. Similar phenomena arise
in local area networks as well. We will call a network dynamic
if its traffic exhibits time-varying behavior.

The challenges for anomaly detection of dynamic networks
are two-fold. First, the methods used for learning the “normal
behavior” are usually quite sensitive to the presence of non-
stationarity. Second, the modeling and prediction of transient or
time-dependent behavior is hard. To address these challenges,
we generalize the vanilla model-free and model-based methods
from [4] and develop what we call the robust model-free and
robust model-based methods.

The structure of the paper is as follows. Sec. II presents a
model-free and a mode-based method to solve a general binary
composite hypothesis testing problem. Sec. III formulates the
anomaly detection problem in dynamic networks as a binary
composite hypothesis testing problem and applies the methods
presented in Sec. II. Sec. IV introduces a software tool we
developed for the generation of test data and gives an in-depth
explanation of the simulated network. The development of this
tool was motivated by the relative dearth of good quality traces
with labeled anomalies. In the same section, we present results
from our robust methods and compare them with their vanilla
counterparts. Finally, Sec. V provides concluding remarks.

II. BINARY COMPOSITE HYPOTHESIS TESTING

In this section, we consider a problem of testing whether a
sequence G = {g1, . . . , gn} is a sample path of a stochastic pro-
cess G (hypothesis H0). The stochastic process G is assumed
to be discrete-time thus can be denoted as G = {G1, . . . , Gn}.
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All random variables Gi are discrete and their sample space
is a finite alphabet Σ = {σ1, σ2, . . . , σ|Σ|}, where |Σ| denotes
the cardinality of Σ. All observed symbols gi belong to Σ, too.
We assume the joint probability distribution pθ(G1, . . . , Gn)
is parameterized by θ =

{
θ1, . . . , θn

}
∈ Ωn, where Ω is the

space where the elements of θ take values. This problem is a
binary composite hypothesis testing problem.

Because the joint distribution pθ(G1, . . . , Gn) becomes com-
plex when n is large, we focus on two types of simplification.
One is to assume all random variables Gi are i.i.d., the other
is to assume the stochastic process G is a Markov chain.

A. A model-free method

We propose a model-free method that assumes the random
variables Gi are i.i.d. Each Gi takes the value σj with probabil-
ity pFθ (Gi = σj), j = 1, . . . , |Σ|, which is parametrized by θ ∈
Ω. We refer to the vector pFθ = (pFθ (Gi = σ1), . . . , pFθ (Gi =
σ|Σ|)) as the model-free Probability Law (PL) associated with
θ. Then the family of model-free PLs PF =

{
pFθ : θ ∈ Ω

}
characterizes the stochastic process G .

To characterize the observation G, let

E GF (σj) =
1
n

n∑
i=1

1(gi = σj), j = 1, . . . , |Σ|, (1)

where 1(·) is an indicator function. Then, an estimate for
the underlying model-free PL based on the observation G is
EGF =

{
E GF (σj) : j = 1, . . . , |Σ|

}
, which is called the model-

free empirical measure of G.
Suppose µ = (µ(σ1), . . . , µ(σ|Σ|)) is a model-free PL and

ν = (ν(σ1), . . . , ν(σ|Σ|)) is a model-free empirical measure.
To quantify the difference between µ and ν, we define the
model-free divergence between µ and ν as

DF (ν‖µ) ,
|Σ|∑
j=1

ν̂(σj) log
ν̂(σj)
µ̂(σj)

, (2)

where ν̂(σj) = max(ν(σj), ε) and µ̂(σj) = max(ν(σj), ε),∀j
and ε is a small positive constant introduced to avoid underflow
and division by zero.

Definition 1
(Model-Free Generalized Hoeffding Test). The model-free gen-
eralized Hoeffding test [8] is to reject H0 when G is in the
set:

S∗F = {G | inf
θ∈Ω

DF (EGF ‖pFθ ) ≥ λ},

where λ is a detection threshold and infθ∈Ω DF (EGF ‖pFθ ) is
referred to as the generalized model-free divergence between
EGF and PF =

{
pFθ : θ ∈ Ω

}
.

A similar definition has been proposed for robust localization
in sensor networks [9]. One can show that this generalized
Hoeffding test is asymptotically (as n → ∞) optimal in
a generalized Neyman-Pearson sense; we omit the technical
details in the interest of space.

B. A model-based method

We now turn to the model-based method where the random
process G = {G1, . . . , Gn} is assumed to be a Markov chain.
Under this assumption, the joint distribution of G becomes
pθ (G = G) = pBθ

(
g1
)∏n−1

i=1 p
B
θ

(
gi+1 | gi

)
, where pBθ (·) is

the initial distribution and pBθ (· | ·) is the transition probability;
all parametrized by θ ∈ Ω.

Let pBθ (σi, σj) be the probability of seeing two consecutive
states (σi, σj). We refer to the matrix PB

θ = {pBθ (σi, σj)}|Σ|i,j=1

as the model-based PL associated with θ ∈ Ω. Then, the family
of model-based PLs PB =

{
PB
θ : θ ∈ Ω

}
characterizes the

stochastic process G .
To characterize the observation G, let

E GB (σi, σj) =
1
n

n∑
l=2

1(gl−1 = σi, g
l = σj), i, j = 1, . . . , |Σ|.

(3)
We define the model-based empirical measure of G as the
matrix EGB = {E GB (σi, σj)}|Σ|i,j=1. The transition probability

from σi to σj is simply E GB (σj |σi) = EGB (σi,σj)P|Σ|
j=1 EGB (σi,σj)

.

Suppose Π = {π(σi, σj)}|Σ|i,j=1 is a model-based PL and
Q = {q(σi, σj)}|Σ|i,j=1 is a model-based empirical measure.
Let π̂(σj |σi) and q̂(σj |σi) be the corresponding transition
probabilities from σi to σj . Then, the model-based divergence
between Π and Q is

DB(Q ‖ Π) =
|Σ|∑
i=1

|Σ|∑
j=1

q̂(σi, σj) log
q̂(σj |σi)
π̂(σj |σi)

, (4)

where q̂(σi, σj) = max(q(σi, σj), ε), π̂(σi, σj) =
max(π(σi, σj), ε) for some small positive constant ε
introduced to avoid underflow and division by zero. Similar to
the model-free case, we present the following definition:

Definition 2
(Model-Based Generalized Hoeffding Test). The model-based
generalized Hoeffding test is to reject H0 when G is in the set:

S∗B = {G | inf
θ∈Ω

DB(EGB‖PB
θ ) ≥ λ},

where λ is a detection threshold and infθ∈Ω DB(EGB‖PB
θ ) is

referred to as the generalized model-based divergence between
EGF and PB =

{
PB
θ : θ ∈ Ω

}
.

In this case as well, asymptotic (generalized) Neyman-Pearson
optimality can be established.

III. NETWORK ANOMALY DETECTION

In this section, we apply the model-free and model-based
generalized Hoeffding test to the anomaly detection of dynamic
networks. Although we focus on host-based anomaly detection,
in which we monitor the incoming and outgoing packets of a
server, our methods can be easily adapted to monitor routers.
Based on the transmission time and the source-destination
information in the headers, we first aggregate the network
packets into flows. Our flow representation is slightly different
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Fig. 1. Structure of the algorithms.
from that of commercial vendors like Cisco NetFlow. Hereafter,
we will use “flows,” “traffic,” and “data” interchangeably.

Fig. 1 outlines the structure of our methods. We assume
that the normal flows are governed by an underlying stochastic
process G . Since we do not know the families of model-free or
model-based PLs for G explicitly, we assume a set of reference
flows and propose a 2-step procedure to estimate them. We first
inspect each feature separately to generate a family of candidate
PLs, which is then reduced to a smaller family of PLs. We
then aggregate the network flows that need to be evaluated
into window buffers according to their start of transmission
time. For each window, the algorithm applies the model-free
and model-based generalized Hoeffding test.

A. Network traffic representation and flow aggregation

Let S = {s1, . . . , s|S|} denote the collection of all pack-
ets on the host which is monitored. In host-based anomaly
detection, the host is either the source or the destination of
the communication. As a result, only the source IP addresses
for the incoming packets and the destination IP addresses for
the outgoing packets are unknown; we call these the user IP
addresses. Denote the user IP address in packet si as xi, whose
format will be discussed later. The size of si is bi ∈ [0,∞)
in bytes and the start time of transmission is ti ∈ [0,∞) in
seconds. Using this convention, packet si can be represented
as (xi, bi, tis) for all i = 1, . . . , |S|.

Since packets are many, we consolidate network traffic by
grouping packets into flows. We compile a sequence of packets
s1 = (x1, b1, t1s), . . . , s

m = (xm, bm, tms ) with t1s < · · · < tms
into a flow f = (x, b, dt, t) if x = x1 = · · · = xm and tis −
ti−1
s < δF for i = 2, . . . ,m and some prescribed δF ∈ (0,∞).

Here, the flow size b is the sum of the sizes of the packets
that comprise the flow. The flow duration is dt = tms − t1s.
The flow transmission time t equals the start time of the first
packet of the flow t1s. In this way, we can translate the large
collection of packets S into a relatively small collection of flows
F = {f1 = (x1, b1, d1

t , t
1), . . . , f |F| = (x|F|, b|F|, d|F|t , t|F|)}.

We first distill the “user space” into something more manage-
able while enabling us to characterize network behavior of user
groups instead of just individual users. For simplicity of nota-
tion, we only consider IPv4 address. If xi = (xi1, x

i
2, x

i
3, x

i
4) ∈

{0, . . . , 255}4 and xj = (xj1, x
j
2, x

j
3, x

j
4) ∈ {0, . . . , 255}4 are

two IPv4 addresses, the distance between them is defined as:
d(xi,xj) = |xi1 − x

j
1|2563 + |xi2 − x

j
2|2562 + |xi3 − x

j
3|256 +

|xi4−x
j
4|. This metric can be easily extended to IPv6 addresses.

Suppose X is the set of unique IP addresses in F . We
apply typical K-means clustering on X . For each x ∈ X , we
thus obtain a cluster label k(x). Suppose the cluster center for
cluster k is x̄k; then the distance of x to the corresponding
cluster center is da(x) = d(x, x̄k(x)). The cluster label k(x)
and distance to cluster center da(x) are used to identify a user
IP address x, leading to our final representation of a flow as:

f = (k(x), da(x), b, dt, t). (5)

B. Window aggregation

In our methods, flows in F are further aggregated into
windows based on their flow transmission times. A window
is a detection unit that consists of flows in a continuous
time range, which means the flows in the same window are
evaluated together. Let h be the interval between the start points
of two consecutive time windows and ws be an appropriate
window size; then the total number of windows is nw =⌈
(t|F| − t1 − ws)/h

⌉
. Flow f i = (k(xi), da(xi), bi, dit, t

i) be-
longs to window j if t1 + (j − 1)h ≤ ti < t1 + (j − 1)h+ws,
j = 1, . . . , nw. Let Fj be the set of all flows in window
j, then F = ∪nw

j=1Fj if h ≤ ws. Note that there will be
overlap between two consecutive time windows if h < ws and
{Fj : j = 1, . . . , nw} is a partition of F if h = ws.

For each f i, we first quantize da(xi), bi, and dit to discrete
values. For any collection of flows F , let the range of da(xi),
i = 1, . . . , |F| be [dmina , dmaxa ]. We define a discrete alphabet
Σda =

{
dmina + (m− 1

2 )(dmaxa − dmina )/|Σda
|
}
m=1,...,|Σda |

for da(xi), where |Σda
| is the total number of quantization

levels for da(xi). For features bi and dit, Σb and Σdt
are defined

similarly. We quantize da(xi), bi, and dit in f i to the closest
symbol in the discrete alphabets Σda

, Σb, and Σdt
, respectively.

Suppose also the total number of user clusters is K.
After quantization, each tuple of (k(x), da(x), b, dt) corre-

sponds to a symbol in Σ = {1, . . . ,K} × Σda × Σb × Σdt .
Denoting by gi the corresponding symbol of f i and by Gj the
counterpart of Fj , we number the symbols in gi corresponding
to k(xi), da(xi), bi, and dit as features 1, 2, 3, 4.

For each window j, an empirical measure of Gj is calculated.
Because the calculation of empirical measure is the same for
each window, we refer to Gj as G.

C. Model-free method

For anomaly detection of dynamic networks, this section
presents a model-free method that uses the model-free general-
ized Hoeffding test described in Sec. II-A. In each window, the
data G =

{
g1, . . . ,gn

}
are viewed as n i.i.d. observations of a

random variable G that is drawn from a family of model-free
PLs parametrized by θ. Assuming that Ω =

{
ω1, . . . , ω|Ω|

}
is

a finite set, PF =
{
pFθ : θ ∈ Ω

}
is a finite set thus and can

be written as PF =
{

pF1 , . . . ,p
F
|Ω|

}
.

PF is usually not available and needs to be estimated from
a reference Gref . Each flow in Gref is governed by one of the
PLs in PF . Let MF (j) be the set of indices of flows in Gref



4

t p

Shifting Networks

Periodic  Networks

t d

A

B

t dt d

t d

Fig. 2. The relationship between flow transmission time t and indices of flows
M(j) governed by PL j for shifting networks (A) and periodic networks (B).

governed by PL j. If MF (j) is known, we use (1) to estimate
pj . We will discuss how to calculate MF (j) later.

Let EGF be the model-free empirical measure of G calculated
using (1). The model-free generalized Hoeffding test of Defini-
tion 1 becomes

S∗F = {G| min
j=1,...,|Ω|

DF (EGF ‖ pFj ) ≥ λ}. (6)

D. Model-based method

Likewise, this section presents a model-based method that
uses the model-based generalized Hoeffding test described
in Sec. II-B. In each window, we consider the data G ={
g1, . . . ,gn

}
as generated from a Markov chain with transition

probabilities pBθ (·|·). Again θ ∈ Ω is a parameter for the
transition probabilities. Similar to the model-free approach, we
assume that Ω is a finite set Ω =

{
ω1, . . . , ω|Ω|

}
. Let PB

θ

denote the PL under θ. Define PB =
{

PB
1 , . . . ,P

B
|Ω|

}
as a

finite set of model-based PLs.
PB needs to be estimated from the reference data Gref .

Considering two consecutive flows gl and gl+1, the transition
from gl to gl+1 must be governed by one of the PL in PB . We
say both gl and gl+1 are governed by this PL. Define MB(j)
as the index set of flows governed by PL j for the model-based
method. If MB(j) is known, we can apply (3) to calculate the
mode-based empirical measure.

Let EGB be the empirical measure (cf. (3)). The model-based
generalized Hoeffding test of Definition 2 becomes

S∗B = {G| min
j=1,...,|Ω|

DB(EGB ‖ PB
j ) ≥ λ}. (7)

E. PLs for different dynamic networks

As described in Secs. III-C and III-D, ifMF (j) andMB(j)
are known, we can use (1) and (3) to estimate the model-free
and model-based PL j, respectively. Set M(j) = MF (j) =
MB(j) for j = 1, . . . , |Ω|, which is motivated by the fact
that M(j) reflects a stationary mode of the network and is
independent of the method selected to represent the flows. Let
t =

{
t1, . . . , tn

}
be the set of flow transmission times of flows

in Gref , where ti corresponds to the flow transmission time of
gi. Based on the information in t, we can propose candidate
M(j). This section describes methods to identify M(j) for
two common types of dynamic networks.

Shifting Periodicity

Region 1

Interval

F
re

qu
en

cy

td

t p /2

Region 2

Fig. 3. Histogram of intervals between two consecutive flows with a specific
feature quantized to the same discrete value.

1) Shifting networks: For the first type of dynamic network,
properties of normal traffic shift with respect to time. This
means that the flows close in time are more likely to be
governed by the same PL. We divide Gref into segments, each
with a duration of a prescribed value td. The flows in each
segment are used to estimate one PL (Fig. 2A). The flow indices
in segment j are

M(j) = {i : t1 + (j − 1)td ≤ ti < t1 + jtd}, (8)

where j = 1, . . . ,
⌊
(tn − t1)/td

⌋
. td characterizes how quickly

we expect the statistical properties of the traffic to shift. Larger
td indicates a slower shifting of traffic properties in the network.
One can choose a variety of td, and for each td’s generate the
corresponding M(j) and the resulting PLs.

2) Periodic networks: In the second type of dynamic net-
works, the properties of the normal traffic change periodically.
In addition to having close flow transmission times, two flows
can be governed by the same PL when the difference of their
flow transmission times equals the period (Fig. 2B). Let td
characterize shifts within the period and let tp be the period.
For j = 1, . . . , btp/tdc, let

M(j) = ∪k∈Kj

{
i : ktp + (j − 1)td ≤ ti < ktp + jtd

}
, (9)

where Kj =
{
k : ktp + (j − 1)td > t1 and ktp + jtd < tn

}
.

Again, we can choose a variety of tp’s and td’s with each
combination contributing to btp/tdc PLs.

Practical networks can exhibit both types of nonstationary
behavior described above. Moreover, the periodicity and the
degree of shift may change over time, too. To increase the ro-
bustness of the set of estimated PLs to these non-stationarities,
we first propose a large collection of candidates and then refine
it using integer programming.

F. Estimation of candidate PLs

We now present a procedure to generate a set of candidate
PLs by inspecting each feature separately. We have a se-
quence of reference quantized flows Gref =

{
g1, . . . ,g|Gref |

}
and the corresponding flow transmission times are t ={
t1, . . . , t|Gref |

}
. Recall that each quantized flow gi consists of

quantized values of a cluster label k(xi), a distance to cluster
center da(xi), a flow size bi and a flow duration dit, which are
called features 1, . . . , 4, respectively. For all a = 1, 2, 3, 4, let
Ga =

{
g1
a, . . . , g

|Gref |
a

}
be the sequence of quantized feature a

for each flow in Gref . For a = 1, 2, 3, 4 and b = 1, . . . , |Σa|,
we say a flow gi belongs to channel a–b if gia equals σab . We



5

V
al

ue
 o

f 
F

ea
tu

re

t p1

t p2

time

channel

Fig. 4. Illustration of the peaks in Region 2 of Fig. 3.

first analyze each channel separately to get a rough estimate
of td and tp. Then, channels corresponding to the same feature
are aggregated to generate a combined estimate for this feature.

We define Iab =
{
ti : gia = σab

}
as the sorted sequence of

flow transmission times for flows in channel a–b. The interval
between two consecutive flows in channel a–b is τkab = tkab −
tk−1
ab , k = 2, . . . , |Iab|, where tkab is the kth element in Iab.

For shifting networks, since the majority of flows in each
channel belong to a continuous time range, the intervals be-
tween two consecutive flows are small. The histogram of the
intervals {τkab : k = 2, . . . , |Iab|} will have a heavy head and a
small tail (Region 1 in Fig. 3). The end of the tail can be used
as an upper bound on the interval between two consecutive
flows and is a good option for td.

For periodic networks, the histogram for intervals in {τkab :
k = 2, . . . , |Iab|} is also heavily skewed to small intervals,
thus the td can be estimated in the same way as with shifting
networks. However, the intervals between two consecutive
flows can be large. Fig. 4 shows an example of a feature
that exhibits periodicity. There will be two peaks around tp1
and tp2 in the histogram of intervals for flows whose values
are between the two dashed lines. We can select tp such that
(tp1 + tp2) /2 ≈ tp/2. There can be a single or more than two
peaks because of the randomness in the network; in either case,
we can choose the mean of all peaks as an approximation of
tp/2 (cf. Fig. 3).

Denote the estimate of td and tp based on channel a–b as
tabd and tabp , respectively. We use the subscript {d, p} to unify
the notations for both estimates. tabp = 0 if no periodicity is
found in channel a–b. For a = 1, 2, 3, 4, let T a

{d,p} = {tab{d,p} :
b = 1, . . . , |Σa|, and tab{d,p} > 0} be the collection of estimates
for all channels of feature a. We define the combined estimate
of td and tp for feature a as ta{d,p} = MEAN

(
T a
{d,p}

)
, where

MEAN(·) calculates the sample mean of a set.
If T a

p is empty, the network is non-periodic according to
feature a, thus, a family of candidate PLs can be generated
using tad and (8). Otherwise, the network is periodic according
to feature a, and a family of candidate PLs can be generated
using tad, tap, and (9). In addition, in case that some prior
knowledge of td and tp is available, the family of candidate PLs
can include the PLs calculated based on this prior knowledge.

G. PL refinement with integer programming

Since PLs are estimated from a reference trace Gref , we
need to avoid “overfitting” the data. The larger the family of
PLs is, the more likely it is to overfit Gref . Furthermore, a
smaller family of PLs reduces the computation cost. With this

motivation, this section introduces a method to refine the family
of candidate PLs.

For simplicity, we only describe the procedure for the model-
free method. The procedure for the model-based method is
similar. In the rest of the paper, the divergence between a
collection of flows and a PL is equivalent to the divergence
between the empirical measure of these flows and the PL.

Suppose the family (namely the set) of candidate PLs is the
set P = {pF1 , . . . ,pFN} of cardinality N . Because no alarm
should be reported for Gref , or segments of Gref , our primary
objective is to choose the smallest set PF ⊆ P such that there
is no alarm for Gref . We aggregate Gref into M windows using
the techniques of Sec. III-B and denote the data in window
i as Giref . Let Dij = DF (EG

i
ref ‖ pFj ) be the divergence

between flows in window i and PL j for i = 1, . . . ,M and
j = 1, . . . , N . We say window i is covered (namely, reported as
normal) by PL j if Dij ≤ λ. With this definition, the primary
objective becomes to select the minimum number of PLs to
cover all the windows.

There may be more than one subsets of P having the same
cardinality and covering all windows. We propose a secondary
objective characterizing the variation of a set of PLs. Let
Nj = {i : Dij ≤ λ} be the index set of windows covered
by PL j and denote by N (1)

j , . . . , N
(|Nj |)
j the ordered elements

of Nj . Define Dj = {N (i)
j − N

(i−1)
j : i = 2, . . . , |Nj |} the

set of differences between consecutive window indices covered
by PL j. The coefficient of variation for PL j is defined as
cjv = STD(Dj)/MEAN(Dj), where STD(Dj) and MEAN(Dj)
are the sample standard deviation and mean of set Dj , respec-
tively. A smaller coefficient of variation means that the PL is
more “regular.” The secondary objective to minimize the sum
of coefficients of variation for selected PLs. We formulate PL
selection as a weighted set cover problem in which the weight
of PL j is 1+γcjv , where γ is a small weight for the secondary
objective. Let xi be the 0–1 variable indicating whether PL i
is selected or not; let x = (x1, . . . , xN ). Let A = {aij} be
an M × N matrix whose (i, j)th element aij is set to 1 if
Dij ≤ λ and to 0 otherwise. Here, λ is the same threshold we
used in (6). Let cv = (c1v, . . . , c

N
v ). The selection of PLs can

be formulated as the following integer programming problem:
min 1

′
x + γc

′

vx
s.t. Ax ≥ 1,

xj ∈ {0, 1}, j = 1, . . . , N,
(10)

where 1 is a vector of ones. The cost function equals a
weighted sum of the primary cost 1

′
x and the secondary cost

c
′

vx. The first constraint enforces there is no alarm for Giref ,
i = 1, . . . ,M .

Because (10) is NP-hard, we propose a greedy algorithm
to solve it (Algorithm 1). HEURISTICREFINEPL is the main
procedure whose parameters are A, cv , a discount ratio r < 1,
and a termination threshold γth. In each iteration, the algorithm
decreases γ by a ratio r and calls the GREEDYSETCOVER pro-
cedure to solve (10). The algorithm terminates when γ < γth.
In the initial iterations, the weight γ for the secondary cost is
large so that the algorithm explores solutions which select PLs
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function HEURISTICREFINEPL(A, cv , r, γth)
Init: bestCost := ∞, γ := 1, x∗ := 0
while γ > γth do

x := GREEDYSOLVE(A, γ, cv), γ := rγ
if 1

′
x + γthc

′

vx < bestCost then
bestCost := 1

′
x + γthc

′

vx
x∗ := x

end if
end while
return x∗

end function
function GREEDYSETCOVER(A, γ, cv)

Init: x0 := 0, C := ∅
while |C| < M do

j+ := arg maxj:x[j]=0

P
i/∈C aij

1+γcv [j]

x[j+] := 1, C := C ∪ {i : aij+ = 1}
end while
return x

end function
Algorithm 1: Greedy algorithm for PL refinement.

with less variation. Later, the weight γ decreases to insure that
the primary objective plays the main role. GREEDYSETCOVER
uses the ratio of the number of uncovered windows a PL can
cover and the cost 1 + γcv as heuristics, where cv is the
corresponding coefficient of variation. GREEDYSETCOVER will
add the PL with the maximum heuristic value to PF until all
windows are covered by the PLs in PF . Suppose the return
value of HEURISTICREFINEPL is x∗. Then, the refined family
of PLs is PF =

{
pFj : x∗j > 0, j = 1, . . . , N

}
.

IV. SIMULATION RESULTS

Lacking data with annotated anomalies is a common problem
for validation of network anomaly methods. We developed an
open source software package SADIT [10] to provide flow-
level datasets with annotated anomalies. Based on the fs-
simulator [11], SADIT simulates the normal and abnormal
flows in networks efficiently.

We simulated the network of a small organization (Fig. 5).
The network is clearly partitioned into an internal network
and several Internet nodes. The internal network consists of
8 normal nodes CT1-CT8 and 1 server SRV containing some
sensitive information. There are also three Internet nodes INT1-
INT3 that access the internal network through a gateway
(GATEWAY). For all links, the link capacity is 10 Mb/s and
the delay is 0.01 s.

All internal and Internet nodes communicate with the SRV
and there is no communication between other nodes. The nor-
mal flows from all nodes to SRV have the same characteristics.
The size of the normal flows follows a Gaussian distribution
N(m(t), σ2). The arrival process of flows is a Poisson process
with arrival rate λ(t). Both m(t) and λ(t) change with time t.
We consider two types of changing patterns for normal traffic:
shifting pattern and day-night pattern. For both patterns, we
monitor the traffic on the server and evaluate the performance of

central node

Fig. 5. Simulation settings.
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Fig. 6. Histogram of intervals for a network in which flow size exhibits a
shifting pattern. Each plot corresponds to a channel. There are 30 bins and all
plots share the x-axis. For all plots, the first bin is not plotted because it is
significantly higher than the rest of the bins.

the robust model-free and model-based methods for an anomaly
in which a user downloads substantially large files.

A. Shifting pattern

Since the average Internet speed is increasing, user appli-
cations become more and more bandwidth-consuming. From
the flow perspective, this means that the average flow size is
shifting to higher values.

As a simple model, we assume this shift is linear with respect
to time and the flow arrival rate is still stationary. We further
assume that all users exhibit the same shift pattern. As a result,
m(t) is a linear function of time as m(t) = at + b, where a
and b are two parameters characterizing the shift of the traffic
and λ(t) is a constant. In our simulation, we set b = 4 Mb,
a = 3.6 Kb/h, and σ2 = 0.01 for all users. The flow arrival
rate is constant and λ(t) = 0.1 fps (flows per second). Using
this shifting pattern, we generate reference traffic Gref for one
week (168 hours).

To obtain the traffic patterns in Gref , the procedure of
Sec. III-F is applied to identify td and tp. For window aggrega-
tion, both the window size ws and the interval h between two
consecutive windows are 2000 s. The number of user clusters
is K = 2. For the quantization, the number of quantization
levels for the distance to cluster center, the flow size, and the
flow duration (features 2, 3, 4) are 2, 2, and 8, respectively.

The values of tp and td can be estimated by inspecting
the histograms of the 8 channels of feature 3 (cf. Fig. 6).
Most channels have tails for small interval values but no peak
caused by periodicity, which clearly indicates that the normal
pattern is shifting and non-periodic, thus, tp is unnecessary.
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Fig. 11. Traffic pattern of social network websites.

The combined estimate of td based on flow size is t3d = 3.89h.
There are 43 candidate model-free and model-based PLs, each
PL being calculated using a segment of Gref .

For the model-free method, because m(t) and λ(t) shift with
time, the PL calculated based on the flows in one interval has
very small divergence during this interval, but the divergence
becomes larger for times away from this interval (cf. Fig. 7A).
There are 4 PLs selected by the PL refinement procedure when
the detection threshold is set to λ = 2 (Fig. 7B).

We say PL j∗ is active during window i if its divergence
with traffic in this window is the smallest among all selected
PLs, namely j∗ = arg minj Dij . Each selected PL is active
for a continuous range of time, which is consistent with the
fact that the traffic pattern is shifting (Fig. 7C). The active PL
oscillates before it switches to a new PL. Although the number
of PLs is reduced after refinement, the generalized model-free
divergence between each Giref and the set of selected PLs is
very close to the corresponding divergence between Giref and
the set of all candidate PLs (Fig. 7D). This implies that the
reduced set represents Gref well.

For the model-based method, 6 PLs are selected by the PL
refinement procedure when λ = 2 (Fig. 8A,B). Each PL is
active for a continuous range of time and we can observe
similar oscillations as in the model-free method during the
transition between two active PLs (Fig. 8C). Again, the model-
based generalized divergence between each Giref and either
the set of selected PLs or the set of all candidate PLs is very
similar (Fig. 8D).

B. Day-night pattern

Another type of dynamic pattern is a day-night pattern. One
example of day-night pattern is the traffic of web servers.
People browse websites more frequently during the day than
the night, thus, the normal traffic to web servers exhibits
diurnal variation. Fig. 11 shows the normalized average traffic
to American social websites over a day [12].

We assume that the flow arrival rate and the mean flow size
have the same day-night pattern. Let p(t) be the function shown
in Fig. 11, and assume λ(t) = Λp(t) and m(t) = Mpp(t),
where Λ and Mp are the peak arrival rate and the peak mean
flow size. In our simulation, we set Mp = 4 Mb, σ2 = 0.01,
and Λ = 0.1 fps for all users. Using this day-night pattern, we
generate reference traffic Gref for one week (168 hours) whose
start time is 5 pm. Again, an estimation procedure is applied

to estimate td and tp. The parameters for window aggregation
and quantization are the same as in Sec. IV-A.

The period can be estimated by inspecting the histograms
of the 8 channels of feature 3, namely the flow size fea-
ture (Fig. 12). Peaks can be observed in all channels except
for channel 3-4 and 3-5. The combined estimate of the period
based on flow size is t3p = 24.56 h, which has only 2.3% error
with the real value of 24 h.
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Fig. 12. Histogram of intervals for the day-night pattern. Each subfigure
corresponds to one channel. All subfigures share the x-axis and the total number
of bins is q = 30. The first bin is not plotted in the histogram because it is
significantly higher than the rest of the bins.

For the model-free method, there are 64 candidate model-
free PLs proposed in the estimation stage. The model-free
divergence between each window and each candidate PL is
a periodic function of time, too. Some PLs have smaller diver-
gence during the day and some others have smaller divergence
during the night (cf. Fig. 9A). However, no PL has small
divergence for all windows. 3 PLs out of the 64 candidates
are selected when the detection threshold is λ = 0.6 (cf.
Fig. 9B). The 3 selected PLs are active during day, night,
and the transitional time, respectively (cf. Fig. 9C for the
active PLs of all windows). For all windows, the model-free
generalized divergence between Gref and all candidate PLs is
very close to the divergence between Gref and only the selected
PLs (Fig. 9D). The difference is relatively larger during the
transitional time between day and night. This is because the
network is more dynamic during this transitional time, thus,
more PLs are required to represent the network accurately.

For the model-based method, there are 64 candidate model-
based PLs, too. Similar to the model-free method, the model-
based divergence between all candidate PLs and flows in each
window in Gref is periodic (Fig. 10A). There is no PL that
can represent all the reference data Gref . 2 PLs are selected
when λ = 0.4 (Fig. 10B). One PL is active during the
transitional time and the other is active during the stationary
time, which consists of both day and night (Fig. 10C). As
before, the divergence between each Giref and all candidate PLs
is similar to the divergence between Giref and just the selected
PLs (Fig. 10D).

The results show that the PL refinement procedure is effective
and the refined family of PLs is meaningful. Each PL in the
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Fig. 7. Results of PL refinement for model-free PLs in a network with
shifting pattern. (A) and (B) plot the model-free divergence between
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Fig. 8. Results of PL refinement for model-based PLs in a network with
shifting pattern. (A) and (B) plot the model-based divergence between
Gi

ref and all candidate PLs or just selected PLs, respectively. (C) plots
the active PL for each window. (D) plots the model-based generalized
divergence between Gi

ref and all candidate PLs/selected PLs.
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Fig. 9. Results of PL refinement for the model-free method in a network
with day-night pattern. All figures share the x-axis. (A) and (B) plot the
divergence of traffic in each window with all candidate PLs and with
selected PLs, respectively. (C) shows the active PL for each window.
(D) plots the generalized divergence of traffic in each window with all
candidate PLs and selected PLs.
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Fig. 10. Results of PL refinement for the model-based method in a
network with day-night pattern. All figures share the x-axis. (A) and
(B) plot the divergence of traffic in each window with all candidate PLs
and with selected PLs, respectively. (C) shows the active PL for each
window. (D) plots the generalized divergence of traffic in each window
with all candidate PLs and selected PLs.

refined family of the model-free method corresponds to a
“pattern of normal behavior,” whereas, each PL in the refined
family of the model-based method describes the transition
among the “patterns”. This information is useful not only for
anomaly detection but also for understanding the normal traffic
in dynamic networks.

C. Comparison with vanilla stochastic methods

As we have argued, anomaly detection of dynamic networks
is very challenging. Because the properties of normal traffic are
time-varying, it is much harder for algorithms to distinguish
malicious traffic from normal traffic. The vanilla model-free
and model-based methods ([4, 13]), which are the foundation of
our robust methods, are designed for networks with stationary
traffic. In the vanilla methods, all reference traffic Gref is used
to estimate a single PL.

For both types of normal patterns in Sec. IV-A and Sec. IV-B,
we compared the performance of our robust model-free and

model-based method with their vanilla counterparts in detecting
anomalies. We used all methods to monitor the server SRV for
one week (168 hours) under the two patterns.

We considered an anomaly in which node CT2 increases
the mean flow size by 30% at 59h and the increase lasts for 80
minutes before the mean returns to its normal value. This type
of anomaly is associated with a situation when some users try
to download large files from the server, which can happen when
the attacker tries to download sensitive information packed into
a large file.

For all methods, the window size is ws = 2000s and the
interval h = 2000s. The quantization parameters are equal
to those in the procedure for analyzing the reference traffic
Gref . The simulation results show that the robust model-free
and model-based methods perform better than their vanilla
counterparts for both types of normal traffic patterns (Fig. 13).

For the case when normal traffic exhibits a shifting pattern,
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Fig. 13. Comparison of vanilla and robust methods. (A), (B), (C), (D) are for a network with a shifting pattern; (A), (B) show detection results of vanilla and
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methods. The horizontal lines indicate the detection threshold.

the detection threshold λ equals 2.0 for all methods. The
vanilla model-free method misses the anomaly when the normal
traffic shows a shifting pattern (Fig. 13A). To make it worse,
it generates false alarms for the first 30 hours. In contrast,
the robust mode-free method detects the anomaly successfully
without false alarms (Fig. 13B). False alarms also appear in the
detection results of the vanilla model-based method, though
it detects the anomaly successfully (Fig. 13C). Again, the
robust model-based method is superior as it reports no false
alarm (Fig. 13D).

Compared with the shifting pattern, the day-night pattern
has more influence on the results from the vanilla meth-
ods. For both the vanilla and the robust model-free methods,
the detection threshold λ equals 0.6. The vanilla model-free
method reports all night traffic (between 3 am to 11 am) as
anomalies (Fig. 13E). The reason is that the night traffic is
lighter than the day traffic, so the PL calculated using all
of Gref is dominated by the day pattern, whereas the night
pattern is underrepresented. In contrast, because both the day
and the night pattern is represented in the refined family of
PLs (Fig. 9B), the robust model-free method is not influenced
by the fluctuation of normal traffic and successfully detects the
anomaly (Fig. 13F).

The day-night pattern has similar effects on the model-
based methods. When the detection threshold λ equals 0.4,
the anomaly is barely detectable using the vanilla model-based
method (Fig. 13G). Similar to the vanilla model-free method,
the divergence is higher during the transitional time because the
transition pattern is underrepresented in the PL calculated using
all of Gref . Again, the robust model-based method is superior
because both the transition pattern and the stationary pattern
are well represented in the refined family of PLs (Fig. 13H).

V. CONCLUSIONS

The statistical properties of normal traffic are time-varying
for many networks that are dynamic. We propose a robust

model-free and a robust model-based method to perform host-
based anomaly detection in dynamic networks. Our methods
can generate a more complete representation of the normal
traffic and are robust to the non-stationarity in networks.
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