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An Actor-Critic Algorithm With Second-Order
Actor and Critic

Jing Wang and loannis Ch. Paschalidis, Fellow, IEEE

Abstract—Actor-critic algorithms solve dynamic decision
making problems by optimizing a performance metric of
interest over a user-specified parametric class of policies.
They employ a combination of an actor, making policy
improvement steps, and a critic, computing policy improve-
ment directions. Many existing algorithms use a steepest
ascent method to improve the policy, which is known to suf-
fer from slow convergence for ill-conditioned problems. In
this paper, we first develop an estimate of the (Hessian) ma-
trix containing the second derivatives of the performance
metric with respect to policy parameters. Using this esti-
mate, we introduce a new second-order policy improvement
method and couple it with a critic using a second-order
learning method. We establish almost sure convergence of
the new method to a neighborhood of a policy parameter
stationary point. We compare the new algorithm with some
existing algorithms in two applicationSand demonstrate
that it leads to significantly faster convergence.

Index Terms—Actor-critic algorithms, Markov decision
processes, Newton’s method, robotics.

|. INTRODUCTION

ARKOV Decision Processes (MDPs) provide a general

framework for sequential decision making problems. Al-
though MDPs can be solved using dynamic programming, the
well-known “curse of dimensionality” becomes an impediment
for larger instances [1]. In addition, dynamic programming in
a standard implementation requires explicit transition probabil-
ities among states under each control, which are not available
for many applications. To address these limitations, a number
of approximate dynamic programming techniques have been
developed, including reinforcement learning methods [2], a va-
riety of techniques involving value function and policy approx-
imations (neuro-dynamic programming [3]) and actor-critic
algorithms [4].
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This paper focuses on the latter actor-critic algorithms. They
optimize a parametric user-designed Randomized Stationary
Policy (RSP) using policy gradient estimation. RSPs are poli-
cies parameterized by a parsimonious set of parameters. To
optimize the RSPs with respect to these parameters, actor-critic
algorithms estimate policy gradients using learning methods
that are much more efficient than computing a cost-to-go func-
tion over the entire state-action space. Many different vari-
ants of actor-critic algorithms have been proposed and shown
to be effective for many applications such as robotics [5],
biology [6], navigation [7], and optimal bidding for electricity
generation [8].

In an attractive type of an actor-critic algorithm introduced in
[4], a critic is used to estimate the policy gradient from observa-
tions on a single sample path and an actor is using this gradient to
update the policy at a slower time-scale [4]. The estimate of
the critic tracks the slowly-varying policy asymptotically, using
first-order variants of the Temporal Difference (TD) learning
algorithms (TD(1) and TD(})). However, it has been shown that
second-order learning methods—Least Squares TD (LSTD)—
are superior in terms of rate of convergence (see [9]-[14]).
LSTD was first proposed for discounted cost problems in [11]
and was shown to have the optimal rate of convergence in [12].
In [14], LSTD is used in the critic of an actor-critic algorithm,
resulting in the LSTD Actor-Critic algorithm (LSTD-AC).
Later, this algorithm was applied to applications of robot
motion control with temporal specifications [15]-[17]. Despite
faster convergence than TD-based methods, LSTD-AC exhibits
slow convergence for ill-conditioned problems in which the
performance metric is more sensitive to some parameters in the
RSPs than others. The reason is that it uses a first order actor
with an “unscaled” gradient, commonly known as steepest
ascent, to update the policy. This often leads to a “zig-zagging”
behavior in order to converge to a stationary point.

Several algorithms have been introduced which use a second-
order method in the actor. The “natural” gradient method was
originally proposed for stochastic learning [18], [19]. [20] pro-
posed a different estimate of the natural gradient but its accuracy
can be influenced by the choice of basis functions; an episodic
algorithm was then proposed to guarantee the unbiasedness of
the estimate. These methods use the inverse of the Fisher infor-
mation matrix to scale the gradient. [21] suggested several incre-
mental methods using the natural policy gradient. [22] presented
an online natural actor-critic algorithm using a natural gradient
and applied it to a road traffic optimization problem. Based on
[20], [23] proposes three fully incremental natural actor-critic
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algorithms. It also describes a method that is based on a
“vanilla” gradient and provides extensive empirical comparison
of all algorithms in test problems (so called Generic Average
Reward Non-stationary  Environment Testbed—GARNET
problems [23]).

Although natural gradients are very effective in stochastic
learning, there are alternative ways to scale gradients. The
Hessian matrix of the performance metric with respect to the pa-
rameters is commonly used to improve the rate of convergence.
[24] proposes an estimate of the Hessian matrix for a discounted
reward problem using a sample path of an MDP. Although the
relationship between the Fisher information matrix and the Hes-
sian matrix has been briefly discussed in [19] and [25], it is still
not fully clear how they are related in the actor-critic framework
and why natural actor-critic algorithms work well in practice.

In this work, we develop a more general estimate of the
Hessian matrix for actor-critic algorithms. In Section V-C, we
demonstrate that our Hessian estimate degenerates to the Fisher
information matrix used in natural actor-critic algorithms if we
assume no knowledge of the state-action value function and ig-
nore second derivatives with respect to the parameter vector. In
this light, natural actor-critic algorithms can be seen as equiv-
alent to quasi-Newton methods that assume no knowledge of
the state-action value function when approximating the Hessian
matrix. In fact, [12] proposes a quasi-Newton actor-critic
algorithm that is very similar to the methods in [20].

This paper proposes a method that uses LSTD-based crit-
ics to provide estimates of both the gradient and the Hessian
and utilizes the Hessian estimate in the actor to update policy
parameters.

We establish almost sure convergence in the neighborhood
of a stationary point (with respect to policy parameters) of the
performance metric. We remark that a subset of the results ap-
peared in a preliminary conference paper in [1]. The present
paper contains all proofs concerning the Hessian estimate, the
convergence analysis which was absent from [1], and a much
more extensive numerical evaluation of our method both in
GARNET problems and in an application from robotics.

The remainder of the paper is organized as follows: Section II
provides background on MDPs and establishes some of our no-
tation. Section III presents the estimation of the policy gradient.
Section IV develops the estimate of the policy Hessian, which
is the foundation of the new algorithm. Section V describes
our method and Section VI proves its convergence. Section VII
presents two case studies.

Notation: Bold letters are used to denote vectors and matrices;
typically vectors are lower case and matrices upper case. Vectors
are column vectors, unless explicitly stated otherwise. Prime de-
notes transpose. For the column vector x € R" we write x =
(z1,...,2,) for economy of space, while ||x|| denotes the
Euclidean norm. The expressions > 0 and = 0 denote positive-
definiteness and positive-semi-definiteness, respectively. Vec-
tors or matrices with all zeroes are written as 0 and the identity
matrix as I. For any set .7, || denotes its cardinality. 8 denotes
the parameters in parameterized policies. If not explicitly speci-
fied, V and V2 denote the gradient and Hessian w.r.t. 8. To sim-
plify the notation, a lot of equations in this paper are represented

using functional notation and the domain of these functions is
assumed to be X x U, where X and U are the state and the
action space, respectively, of the MDP. Vector-valued functions
are denoted using bold letters while scalar-valued functions are
denoted using normal letters. 0 and 1 are functions that assign
the value 0 and 1 to all state-action pairs, respectively.

Il. MARKOV DECISION PROCESSES

Consider a discrete-time Markov Decision Process (MDP)
with a finite state space X and an action space U. Let x; € X
and u, € U be the state of the system and the action taken
at time k, respectively. Let g(x,u;) be the one-step reward
of applying action u;, when the system is at state x;. We will
use X to denote the initial state and p(xj1|xy,uy) for the
state transition probabilities, which are typically not explicitly
known. We assume that {x;, } and {x;,, u;, } are ergodic Markov
chains [12].

This paper considers policies that belong to a parameterized
family of RSPs {pg : @ € R™}. That is, given a state x € X
and an n-dimensional parameter vector 8, the policy applies
action w € U with probability pg(u|x). Given a fixed policy
o (u|x), the history of g(xy,uy) can be represented by a ran-
dom process. Let Fg{-} be the expectation with respect to this
random process; the long-term average reward for a policy g
is a(0) = Bo{limr . = 3211 g ui )]},

In average reward MDP optimization problems, the perfor-
mance metric is the long-term average reward & (@) and the
objective is to optimize & (@). Similar problems can be defined
by using discounted reward or total reward as performance met-
rics [12]. Note that the discounted reward and the total reward
can be treated as the average reward of an artificial MDP (See
Chapter 2 of [12]). Without loss of generality, this paper focuses
on the average reward case. Corresponding results for the other
cases can be obtained with modifications similar to Sec. 2.4 and
2.5 of [12].

Ill. ESTIMATION OF POLICY GRADIENT

The state-action value function Qg : X x U — R (some-
times referred to as the (Q-value function) of a policy ug is
defined as the expected future reward given the current state
x and the action u. Qg is the unique solution of the Poisson
equation with parameter 6 [26], [12] (written as a functional
relationship)

Qo =g — a(0)1 + PeQ, (1

where Py is the operator of taking expectation after one transi-
tion. More precisely, for any real-valued or vector-valued func-
tion f defined on X x U,

(Pof)(x,u) = plylx. wpe(Vy) f(y,v) ()
y.v
forall (x,u) € X x U.
Let now
¢9(X7 u) =Vin NH(U|X)7 (3)
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where 1) (x, u) = 0 when x, u are such that yig (u|x) = 0forall
0’s. Itis assumed that 1 (x, u) is bounded and continuously dif-
ferentiable. Since 19 (u|x) is the probability of action w at state x
for 0, 1 g(x, u) is the gradient of the log-likelihood In pg (u|x).
We write 1g = (¥}, ..., %) where n is the dimensionality
of 6.

For each 8 € R", let ng(x,u) be the stationary probability
of state-action pair (x,u) in the Markov chain {xy,uy }. For
any @ € R", we define the inner product operator (-, -), of two
real-valued or vector-valued functions ()1, Q2 on X x U by

(Q1,Q2)g = 3 Mo (%, )Q1 (%, ) Qs (x, ).

X, u

“4)

A key fact underlying actor-critic algorithms is that the policy
gradient of @(0) can be expressed as [27], [12]
0a(0)
00;

=(Qo,vp)g, i=1,...,n. (5)

IV. ESTIMATION OF THE POLICY HESSIAN

Earlier work in actor-critic methods has used critics based
on TD(1), TD(A), and LSTD methods to estimate the policy
gradient V() [4], [28]. Since we are interested in a Newton-
like gradient ascent update in the actor, in this section we develop
an estimate for the policy Hessian matrix V2 &(6).

Applying the operator V on the real-valued function gg(x, u)
parameterized by 6, we obtain a vector-valued function, abbre-
viated as Vgg, which maps (x, u) to Vgg(x, u). For a vector-
valued function fg : X x U — R parameterized by 8, which
can be denoted as fg = (fa,..., f5'), we define Vfy to be an
n x m matrix-valued function whose ith column is V f5.

Lemma IV.1: For any vector-valued function fg : X x U —
R™, we have

V (Pofy) = Py (er + wef;) )

Proof: For all state-action pairs (x,u) € X x U, we have

V(Pofg)(x,u) = V (Zp(yx, U)MG(V|Y)f9(Y>V)>

y.v

> p(yIx )V (uo(v]y)fe(y,v)). (6)

Yo

In the above, pg(v|y)fe(y,v) is a function defined on X x U,
which is abbreviated as pgfp. Using the chain rule and the
definition of )4, we obtain

V (nefe) = poVis + Viefy

= ue (er + 1/’9f(19) :

The lemma can be proved by substituting (7) to (6). [ |
Lemma IV.1 provides a way to interchange the Py and V
operators. Similar to the definition of 14, we define

(7

®)

where @g(x,u) = 0 when x, u are such that pg(u|x) = 0 for
all 8. g is the Hessian matrix of the log-likelihood In pig (u|x).

o(x.u) = V7 In g (ulx),

The following theorem establishes a similar result to (5) for the
Hessian matrix V2&(6).

Theorem 1V.2 (Hessian Matrix of Average Reward): Let
¢g : X x U — R be the scalar-valued (i, j)-th component of
pg(x,u). The second-order partial derivative of @(@) with
respect to € can be represented as:

> a() i ij
500 = (o voth), +(Qo.0d),
0Qe 0Qe ;
—, g 9
foralli,j =1,...,n, where (-, -), is the inner product operator
defined in (4).

Proof: Applying the V operator on both sides of (1) and
using Lemma IV.1 with fy being the scalar function Qg, we
obtain

Va(0)l+ VQe = Py (10Qe + VQo) - (10)

Defining the vector-valued function fg = 1gQe + VQp and
applying again the V operator on both sides of (10), we have

V(Va(0)l + VQe) = V(Pofo),
which due to Lemma IV.1 implies
(11

Take now the inner product with 1 on both sides of (11) and
notice that because 7g(x, ) is the stationary probability under
0, it holds (1,h), = (1, Poh), for any function h defined on
X' x U. We have

V() + (1.V2 Qo) = (LVF + ¢ef;,>9.

Using the definition of fy and the fact Vfy = V(1gQp) +
V2Qg, we obtain

V2a(8) + (1, V?Qo), = (L, V(19Q0) + V’Qa),
+ (L Qovoto +¥oVQy),

Applying the chain rule, noticing that Vipy = g, and reorga-
nizing the terms in (12) it follows

V2a() = <Q07 1/;91/;'9>9 + (Qo,®a)g

V2a(0)1 + V2Qo = Py (Vfg + f«,bef;)) .

(12)

+ (VQo. %), + (¥0.: V@), (13)

]

Corresponding results for the discounted reward and the total
reward cases can be derived based on the relationship between
these three problems we discussed earlier. Intuitively, the dis-
counted and total rewards can be considered as average rewards
in some artificial MDPs. More detailed information about con-
structing the artificial MDPs is available at Sec. 2.4 and Sec. 2.5
of [12].

Theorem IV.2 states that the Hessian matrix VZ@(6) can be
decomposed into four terms, all of which take the form of inner
products. The first two terms are the inner products of the state-
action value function Qg with ¥t} and ¢ . Because of the
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similarity between the first two terms and (5), we can use similar
techniques as in the LSTD-AC to estimate them.

For the last two terms in (13) we need an estimate of VQg.
Note that (10) is the counterpart of the Poisson equation (1) for
VQg, where Py(1)9Qg) plays the role of the one-step reward.
However, this equation can not be directly used to estimate VQg
because it is quite hard to obtain Pp(1yQe). To address this
problem, we present the following theorem.

Theorem IV.3: Let the function Qg : X x U — R" be the
solution of the equation

Va(0)1+ Qo = 19Qo + PoQp, (14)
and VQg : X x U — R" be the solution of (10). Then,
<VQ97¢,0>0_ <Q97¢,9>0 = _<Q97¢9¢,0>6' (15)

Proof: Applying the Py operator on both sides of (14) and
using the fact that Pp1 = 1, we obtain

Va(0)L+ PoQp = Po(1oQo + FoQo).  (16)
Comparing (10) and (16), it follows PsQg = VQe. As a result,
(VQo.wy) — (Qop) = (VQo — Qo).
= <P9Q9 - Qo, ¢,9>9
= (~6Q0 + Va(O)L ¥y
—(Qo.¥o¥ ), + Va(®) (Labo), .

a7

where the third equality above used (14).
Let now 7g(-) be the stationary probability of the Markov
chain {xy, } under RSP 6. Then, 7g(x, u) = 7o (x) e (u|x), and

(L), =D o, w)polcsu)

X, U

= 3 ol ) Vato (ulx) (o)

X, U

= 3" mo() Y Violuix)

=0, (18)

where in the second equality we used (3) and the last equality
follows from the fact that ) pe(u|x) = 1 for all 6. Eq. (15)
follows by combining (17) and (18). |

By symmetry to Eq. (15), it also holds that

(o050}, (b0.0), = (Gnvows), 09

Substituting (15) and (19) into (13), we obtain a new es-
timate of the Hessian matrix V2a(0) given in the following
Corollary.

Corollary 1V.4: With Qo being a solution of (14), the Hes-
sian matrix V2a(0) can be expressed as:

Via(8) = <Q97 Po — Q//’9".5:9>9 + <Q9’ ¢19>9

+ (%6.Q0), - 20)

A. Function Approximation

We can calculate Qg and Qg by solving (1) and (14). How-
ever, when X x U is very large, the computational cost becomes
prohibitive. This problem can be addressed using function ap-
proximation techniques. One popular type of function approx-
imation is to express (Qg and each component of Qo with a
linear combination of feature functions. We choose a set of fea-
ture functions ¢y = (Yp, pg . Vet i,7 =1,...,n), where
¢ (x,u) is an N-dimensional vector for Vx,u € X x U with
N = (2n? + n) and n being the dimensionality of 6. Similar to
other actor-critic algorithms, the basis functions ¢4 need to be
uniformly linearly independent [4], [12], which can be enforced
by choosing a suitable structure of policies. Some additional
features can be added depending on the particular application.
This added flexibility could be useful in a number of ways as it
has been discussed in [4].

Similar to [12], we consider the following linear approxima-
tion for Qg

reRY.

QZ‘ (Xa u) = d)/O (Xa U)I',

Let us now view the inner product operator in (4) for real-
valued functions in X x U as an inner product between vectors
in RXIIUl and denote by ||-|| 5 the induced norm. Also denote by
®y the low-dimensional subspace spanned by ¢g. If we define

(22)

21

r’ = arg min ||Qg — Qollo,

then Q‘g is the projection of Qg on Pg. Similar to (2.2) of [4],
<Q§*a¢29>9 = <Q0a ¢é>9 )

(@564 —vovh) = (Qo.vd — viwh)

forallz,5=1,...,n.

(23)

Define the linear approximation of Q1. the ith component of
Qo as
Qb (x,u) = pxu)t’,  t'eRY. (24
Again, forall¢,5 =1,...,n and
ti,* _ . At A , 25
arg min [|Qp — Cplle (25)

th is the projection of Qze on ®g. Similar to (2.2) of [4], we
have

(@5 ), = (@o.vs),- 26)

Equations (23) and (26) state that the projections of Qg and
Qg on the low-dimensional space ®¢ are sufficient for estimat-
ing (20). This reduces the computational cost for obtaining Qg
and Qg since we only have to compute the relative parsimo-
nious vectors r* and t'*, i = 1,...,n, while it does not alter the
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inner products needed to compute the gradient Va(8) (cf. (5))
and the Hessian V2a(6) (cf. (20)).

V. A SECOND-ORDER ACTOR-CRITIC ALGORITHM
A. Critic Step

We use the Least Squares Temporal Difference (LSTD) (see,
e.g., [14]) with parameter A to estimate r* and t'*,i = 1...,n,
defined in (22) and (25), respectively. Recall that x; and
uy, denote the state and the action of the system at time k,
respectively. Let oy denote an estimate of the average re-
ward at time k. z, € RY denotes Sutton’s eligibility trace
and A; € RY*YN a sample estimate of the matrix formed by
Zj, (d);,k (xp, up) — (,blak (Xk+1,uk+1)), Which can be viewed as
a sample observation of the scaled difference of the features
between time & and time k + 1. b, € RY refers to a statisti-
cal estimate of the single period relative reward with eligibility
trace zy. Let also use the initial values: A is an identity matrix,
« is zero, and by and z, are column vectors with all zeros. To
estimate r*, we use the following Q)-critic update

g1 = ap + e (g(xn, k) — o), (27)
Ziy1 = AZp + ¢g, (Xi,ur),

= Ap + i (zewy — Ag),

b1 = by + v [(9(xk, ur) — an)zr, — byl

where wj. = ¢y, (X, ur) — Pg, (Xr41,ur41) and 7 is a step-
size. Let r;, be the estimate of r* at time k; we set

-1
Ak+1blc+1>
Tp+1 =
ry,

if det(Ayg > €,
(Arg1) > 28)
otherwise,

where € is a small positive constant used to judge whether Ay |
is “ill-conditioned” or not. A, should be invertible when & is
large enough [29], [30]. Our Q-critic (27) is the same with
the critic update of the LSTD-AC algorithm in [14] and (28)
estimates the same r*. In addition, we add another critic, named
as Q-critic, to estimate t'*, 4.

Letnow vi, i = 1,...,m, be a column vector with all zeros.
Let also 7)), i = 1,...,m, be a scalar set to zero. Notice the
relationship between Eq. (1) for the Q-function and Eq. (14) for

the Q—function. To estimate 1:”, 1 =1,...,n, defined in (25),
we use the following LSTD Q-critic update

Mer = M+ Gl — M)y i=1,... (29)

Vi1 = Vi + Gel(g — )z = vil,
where g}, = T'(r),)r), ¢, (Xi, ur )0p, (X, ;) is an estimate of
the ith component of 1p9Qe which plays the role of the one-step
reward in (14). (j; is the stepsize of the Q-crific and T'(r) is a

function that restricts the influence of the error in the estimate
r;. Let t; be the estimate of t'* at time k. Similar to the Q-critic,

we set
A71 V?',
ti o E+1YEk+1
k+1 —

t.,

if det A, > €,
( k+1) (E:)
otherwise,

for s = 1,...,n. Note that the Sherman-Morrison update of a
matrix inverse [22] and the matrix determinant lemma [31] can
be applied to reduce the computational cost of calculating A,;}Ll
and det(Aj. 1) in (28) and (30).

B. Actor Step

Let Q5 (x,u) = T(r)r'¢hg(x, 1) and QY = T(t)t" ¢ (x, u)
be our estimates for Qg and Q} given r and t', i = 1,...,n.
As mentioned above, the function I'(+) restricts the influence
of the error in r and t’, respectively (cf. (21) and (24)). For
convenience of notation, let T = (t!,...,t") and denote by
Qg = (Qg b ,Q‘(; ) a vector-valued function mapping X x
U onto R™ with ith element equal to Qg Motivated by (20)
and using just a single sample to estimate the expectation (in
a standard stochastic approximation fashion), we also define
-[AJQJ"T tobe ann x n matrix-valued function definedon X x U
and parameterized by (0, r, T') as follows

Ugrr = Qb(vo — Pote) + Qo o +¥0(Q3) .

Let H; be the estimate of —V2a(0) at time k with initial
condition Hy = I. The update rule for Hy, is:

H; + U,
Hk+1 -
k> otherwise,

€1y

if Uy = 0,
(32)

where U, = —IAJQ,(_“,TA, (xk,uy ). Note that Hy, > 0 because
it is updated only when Uy, > 0. Let x;, be the number of times
the top branch in (32) is executed by iteration &k and define

. I,
H, =
Hk7

which will be used to avoid a noisy estimate in the initial updates.
The actor update takes the form:

011 =6, + &F(rk)l‘lkﬁﬁok (Xk,uk-)ﬂ?l/’ek (Xk, ur), (34)

where [y, is a stepsize.

In the update (32), we make sure that our scaling matrix is
always positive definite. Notice that H, is the estimate of the
negative Hessian matrix because we are dealing with a maxi-
mization problem. In particular, the Hessian matrix will gener-
ally be negative definite in the vicinity of a local maximum and
we expect that the upper branch of the update (32) will be used
as we approach such a point. The iteration (34) takes a scaled
gradient ascent step, with the scaling matrix being positive
definite.

The sequences {7} and {(;} correspond to the stepsizes
used by the critics, while §; and I'(r;) control the stepsize for
the actor. The function T'(ry) is selected such that for some
positive constants C; < Cs:

[[e[[T(r) € [Cr, Cal,

if Xk < Xmin (33)

otherwise,

vr € RY,

) Colr — 7
[T(r) =T (@) < ol
L+ [|efl + [17]

(35)
vr,i e RY.

An example that satisfies these requirements is I'(r) =
min(1, D/||r||) for some positive constant D.
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Fig. 1. Relationships between the critics and the actor.

We say a stepsize sequence { f}, } is Square Summable but Not
Summable (SSNS) if fr >0, > 17— f£ <ooand > 1o, fr =
oo. For the algorithm to converge, {¢;. }, {~x }, and {3; } should
be SSNS and satisfy

> Br/w)"

k

<00, Y (w/G)"® <00, (36)
k

for some d;, dy > 0.

The relationships between the two critics and the actor are
shown in Fig. 1. The Q-critic and the Q-critic generate estimates
r; and Ty = (t},...,t}) which yield linear approximations of
Qo and Qg, respectively. Both critics need to converge faster
than the actor in order to track the changes in 6. Moreover,
because the observed derivative q,iC used in the Q-critic depends
on ry, the Q—critic is updated faster than the Q-critic so that it
can track changes in r;. We next present a result establishing a
relationship between the stepsize sequences.

Proposition V.1: Suppose {( } and {5, } are two SSNS step-
size sequences that satisfy

D (Be/G)! < o0,

k

Lety, = (¢ 0)"/2. Then, {7} isalso SSNS and {v; }, {8},
{¢k } satisfy (36).

Proof: Due to the assumption in (37), limy, . (5x /¢ ) = 0,
which implies that there exists a positive constant K such that
for Vk > K, B < (. Since {3 } is SSNS, it follows

D= (GB)*=Ci+ > B =ox,
k

k k=K+1

for some d > 0. 37

where Cy = 3", 4. Furthermore, since {¢; } is SSNS

Z'Yl%:zgﬂk <G+ Z ¢ < o0,
k k

k=K+1

where Cy = S 2. Finally, letting d; = dy = 2d and due to
(37) we have
S B/ =D (/6™ =D (B /&) < 0.
k k K

|

Proposition V.1 simplifies the selection of stepsizes. We just
need to select 55 and (;, first and let v, = (Cx Ok )1/ 2 An exam-
ple of {(x}, {7}, and {0} that are SSNS and satisfy (36)

is: ¢, = 1/k, B = ¢/(klnk), where k> 1 and ¢ > 0, and
Yo = (GBe)'? = (1/k)\/c/Ink.

C. Relationship With Natural Actor-Critic Algorithms

In our approach, we use the Hessian matrix to scale the gra-
dient in order to improve the convergence rate. A similar idea
is to use the Fisher information matrix to scale the gradient. It
was first proposed by [19] and several related algorithms fol-
lowed [20], [23], [21]. This section discusses the relationship
of the Fisher information matrix with the Hessian matrix for
actor-critic algorithms.

Suppose 7g(x,u) is the stationary state-action distribution
when the RSP parameter equals 6. [20] states that the Fisher
information matrix is equal to

Fo = Z ne (%, )V In g (u|x)V In pg(ulx)

X, U

(38)

which can also be written as <l, '«,bei/;/9>0, where g =

V In pg(u|x) (cf. (3)).

Let us now compare this expression with the true Hessian
matrix (cf. (9)). If we set Qy = 1, hence, VQg = 0, and ignore
second derivatives with respect to 6, then the Hessian matrix
degenerates to the Fisher information matrix in (38). In this
sense, natural actor-critic algorithms are quasi-Newton methods
that approximate the Hessian without utilizing the state-action
value function Qg. In contrast, our method takes advantage of
the state-action value function.

VI. CONVERGENCE

A. Linear Stochastic Approximation Driven by a Slowly
Varying Markov Chain

Our @-critic in (27) has the same form as in [14] so its
convergence can be proved in a similar way. In the Q-critic
(29), the increment g} depends on the parameter vector ry.
To facilitate the convergence proof of the Q-critic, this sec-
tion generalizes the theory of linear stochastic approximation
driven by a slowly varying Markov chain developed in [12]
to the case where the objective is affected by some additional
parameters r.

Let {y}. } be a finite Markov chain whose transition probabili-
ties depend on a parameter @ € R™. Let {hg,(-) : 0 € R",r €
R” } be a family of m-vector-valued functions parameterized by
0 € R" andr € RV . Let E;, be some m x m matrix. Consider
the following iteration to update a vector s € R™:

sk+1 = Sk + Ci(he, v, (Y&) — Go, (Yr)st) + G Erse. (39)

In the above iteration, s;; € R™ is the approximation vector.
hg,(-) and Gg(-) are m-vector-valued and m x m-matrix-
valued functions parameterized by 0, r and 0, respectively. Let
E [-] denote expectation. In order to establish the convergence
results, we make the following assumptions.
Assumption A:
1) The sequence {(; } is deterministic, non-increasing and
SSNS.
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2) The random sequence {6} } satisfies |01 — 0 <
By Fy, for some process {F}, } with bounded moments,
where {f;.} is a positive deterministic sequence such
that 3, (B /¢ )? < oo for some d > 0.

3) By is an m X m-matrix valued martingale difference
with bounded moments.

4) The (random) sequence {ry } satisfies ||ry.1 — 11| <
~ F, for some nonnegative process { F}, } with bounded
moments, where {~; } is a positive sequence such that
> (v /Cr)® < oo for some d > 0.

5) r; converges to T(0;) when k — oo,
limy o Hrk - f(Ok)H =0, wp.l.

6) (Existence of solution to the Poisson Equation.) For each
0 and r, there exists h(0,r) € R™, G(0) € R™*™,
and corresponding m-vector and m X m-matrix func-
tion hg (), Gg(-) that satisfy the Poisson equation.
That is, for each y,

namely,

h(0,r) +
G(0) +

(Poho.r)(y),
(PaGg)(y).

ho.(y) = he,(y) —
Goly) = Go(y) —

7) (Boundedness.) For all 6 and r, we have
max(||h(@,r)[,||G(8)]) < C for some constant C.

8) (Boundedness in expectation.) For any d > 0, there ex-
ists Cy > 0 such that sup, E[||fs, (y&)||?] < C4 and
sup; Efllgo, ». (v4)1] < Cy, where fa(-) represents
Go(-) and Gg(-), and gg,(-) represents hg . (-) and
hg . (+).

9) (Lipschitz continuity.) For some constant C' > 0, and
for all 8,6 € R", ||G(6) — G()| < C||6 — 0||. For
all 8,0 ¢ R" andrI‘G]R{V |h(8,r) — h(8,7)| <

(16 - 8] + [r — £])).

10) (Lipschitz continuity in expectation.) There exists a
positive measurable function C(-) such that for ev-
ery d > 0, sup; E [C(yi)?] < oc. In addition, for all
6,0 cR", [[fo(y) —fa(y)l < C(y) , where
fo(-) represents Gg(-) and Gg(-). For all 0,0 ¢
R"andr,r € RV, [Igo.: (y) — 8o (¥)[| < C(y)(|6 —
0| + ||r — ¥||), where gg.(-) represents hg . (-) and
he . (+).

11) There exists a > Osuchthatforalls € R™ and @ € R",
s'G(0)s > als|?.

Lemma VI.1: If Assumptions A.(1-11) are satisfied, then

1imk,_,oo HG(O}C)S;\ — h(Bk,rk)H =0 Wpl

Proof: See Appendix A. |

Theorem VI.2: If Assumptions A.(1-11) are satisfied, then

limkﬂoc HG (Bk) S — h (Gk, f'(Hk)) || =0 Wpl

Proof: We have

h(6.,t(6))]|
h(6y, ;)| + [|h(6, i)

1G (6 )si —

< |G(8r)si — —h(6,7(0;))].-

Due to Assumption A.(9), we have
—h (O, I_‘(O

Jim_[[B (0, r) D)) | < C lim [|ry, —x(0;)]],

where C'is a constant. Combining the above, we have
h(60;,7(61))]|
h(60;,7(6))]|

< 04 C lim |lry — £(6,)]]
k—o00

0 S khrn ||G(0k)sk —

< 0+ klim Hl_l(ek,l‘k) —

= 0, w.p.1,

where the second inequality follows from Lemma VI.1 and
the equality is due to Assumption A.(5). We conclude that
limy, o ||G(0k)sk —h (Ok, f(Ok)) || =0, wp.l.

B. Critic Convergence

In this section, we will use the results in Section VI-A to prove
the convergence of the Q-critic and the Q—critic presented in
Section V-A. Before presenting the convergence results, we first
state the following assumptions and definitions.

Assumption B: There exists a function L : X — [1,00) and
constants 0 < p < 1, b > 0 such that for each 8 € R",

Eoy[L(x1)] < pL(x) + bI-(x), Vx€X,  (40)
where Eg «[-] denotes expectation under € with initial state x,
I (+) is the indicator function for the initial state x* being equal
to the argument of the function, and x; is the (random) state of
the MDP after one transition from the initial state.

The assumption above is identical to [12, Assumption 2.5].
We call a function satisfying the inequality (40) a stochastic
Lyapunov function. Let L : X x U — [1, c0) be a function that
satisfies the following assumption.

Assumption C: For each d > 0 there is K; > 0 such that

Eox|L(x,Up)"] < K4L(x), VvxeX,0eR”,
where U is the random variable of the action at state x.

Note that if any function is upper bounded by a function L
as described in Assumption C, then all its steady-state moments
are finite.

Lemma VI.3: If two functions L; : X x U — [1,00) and
L, :XxU —[1,00) satisfy Assumption C, then so does
LiL,.

Proof: For any two random variables A and B, E[AB] <
(1/2)(E[A?] + E[B?]). As a result, we have

Ee,x [Lf (Xv UO)d

1 1
< 3Box [Ls(x,Un)*] + 5B [Ly(x, Up)*]

L!] (X, Uo)d]

1 PR
S UL, + K8 L ().

I /\

where KQf , and Kj, are the bounding constants of f and g
appearing in Assumption C. |

Definition 1: We define D?) to be the family of all functions
fo(x,u) that satisfy: for all x € X and v € U, there exists a
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constant /' > 0 such that
[fo(x,u)|| < KL(x,u), V0 € R", (41)

o (x, u) — fo(x,u) | < K6 — 8] L(x,u), ¥0,0 € R,
(42)

where the bounding function L satisfies Assumption C.
Lemma VI4: If fg,gg € D'?), then fg + gg € D?) and
foge € D).
Proof: The proof for fg + gp is immediate; we focus on
foge. Inequality (41) can be proved using Lemma 4.3(f) of [4].
To prove inequality (42),

foge — fogall = lIfogo + fogs — foge — fogsll
< [Ifollllge — goll + [I8allllfo — foll
< 2K K, L;Ly|6 0|,
where K; and L are the bounding constant and the bounding

function for f in (41) and (42), while K, and L, are the cor-
responding quantities for g. According to Lemma VL3, L, L,

also satisfies Assumption C, which completes the proof. |
We assume ¢ € D2, which
is the same with Assumption 4.1

of [12]. This assumption ensures that the feature vector
¢o = (0p,...,0p ), as a function of the policy parameter 6,
is “well behaved.” Given our feature vector definition, notice
that this assumption requires that the RSP function family g
is twice continuously differentiable for all 8 with bounded first
and second derivatives that belong to D). We also assume that
the one-step reward function g € D(?).

The critic consists of two parts: a ()-critic that estimates Qg
(cf. (27), (28)) and a Q-critic that estimates Qg (cf. (29), (30)).
The -critic is exactly the same with the LSTD-AC algorithm
[14], whose convergence has already been proved in [14] under
the assumptions imposed. For the Q-critic, denote by V(A) a
column vector stacking all columns in a matrix A.. The Q-critic
can be written as in (39) if we let

’

se= [MueMnp (v (VR @)
ho (y) [ MI‘/(r)r’(j)g(x,u)d:g(x,u) }
’ L(r)r ¢g(x, u)V (2zthg(x, u))
Goly) = [diag(z,.?,z)/M (1)]
E; =0,
where diag(z, . . ., z) denotes an nN x n block diagonal matrix

with every diagonal element being equalto z,y = (x, u,z), M
is an arbitrary (large) positive constant whose role is to facilitate
the convergence proof, and at any iteration k of (39) r, iterates
as in (28). The stochastic process {z; } is the eligibility trace
iterating as in (27).

To prove the convergence of the Q-critic, we just need
to verify Assumptions A.(1-11). It is easy to verify that
Zp = ;”;01 A1y, (%1, w). First, we establish the following
lemma.

Lemma VI.5: For every d >0, we have
supy, E[L(xy, up)?||zi 9] < oo, where L:X x U — [1,00)
is a bounded function that satisfies Assumption C.

Proof: According to the triangle inequality, we have

k-1

Iz | = 1Y 25 b, (ocr, )|

=0
k-1

< Z)»d(kfl%) g, (x1, )|

1=0

k-1

< Ky Y UL (%, w),

1=0
for some bounded function L, that satisfies Assumption C and
some positive constant K, where the last inequality is due to
¢, € D?). In addition, we can multiply with L(xy,, u;,)? and
take expectation on both sides of the above, which yields

E[L (x, ur ) |12 ]|)

k-1

< Ky Y aMETUE(L (), uk) Ly (x, ). (44)
1=0
Similar to the proof of Lemma V1.3,
E[L(xp,ur) Ly (x1, ;)] (45)
1 1
< §E[L(xk,uk)2d] + 3ElL (x1,u)%%] < 0.
Combining (44) and (45), we establish that E[L(xy, uy. )¢ | zx 9]
is bounded. |
Theorem VI.6: Under iterations (27) and (28),
lrrr —rell <y, w.p.1, (46)

for some random sequence {FJ } that has bounded moments,
where {7} } is the stepsize in (27).

Proof: SeeAppendix B. |

Using SSNS stepsizes according to (36), Assumptions A.(1)
and (4) will be satisfied because of Theorem VI.6. Now, ||r||T'(r)
is bounded because of (35). According to (31), U, has bounded
moments because Pg (X, u), ¢g (X, u), Qg, and Qfg, Vi, have
bounded moments. H;, and I:Ik should also have bounded mo-
ments because the update in (32) is applied only when Uy, is pos-
itive definite. As a result, T'(ry)r), Do, (X, uy, ) Hy, Vo, (X1, ur)
should have bounded moments, thus, Assumption A.(2) holds.
Assumption A.(3) is trivially satisfied. In addition, because the
Q-critic converges, we have

klijglo |y, —r(0x)|| =0, w.p.1,
which is Assumption A.(5).

For ¢+ = 1,...,n, define the function 52, = (,bgd)g. Because
0o € D?) and 1y € D), we obtain &), € D(?) according to
Lemma VI1.4. Notice that for any fixed r and 6, the Q—critic 43)
is equivalent to the @Q-critic of an artificial Markov decision
process with reward function gj, , (x,u) = I'(r)r €y(x, u), i =
1,...,n.Asaresult, the Poisson equations of Assumption A.(6)
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should be satisfied with appropriately defined average steady-
state quantities h(6@,r) and G(0). More specifically, similar to
[4, Sec. 5.2], we have

Ri(ear) = <la gé,r>97
2(0) = (1-2)"" (L, ¢a)g
hi (0,r) Z)Lk Pggg. —R'(0,1)L, ¢g),
h(0,r) = (M&'(0,r),..., ME"(0,r),
(hl(0,r) +7'(0,1)z(0), ...,
(b1 (0,r) +&"(0,1)z(0)),
. I 0
G(6) = [diag(z(e),...j(e))/M I

where Pg denotes the application of the operator Py k times.
We can interpret &' (0, r) as the steady-state expectation of the
“observed reward” function g , .

Let now fligvr(y) =T(r)r'éh(x,u)z,i=1,...,
seen that if hﬁ,,r are bounded and Lipschitz continuous in ex-

pectation forall ¢ = 1, ..., n, then hy , should also be_ bounded
and Lipschitz continuous in expectation. Recall that £, € D).

n. It can be

Fori=1,...,nandeachd > 0,
Sup B {11, (v |
< (T(x)ell)* SUPE[”'SG(XMW)” Iz ]| ]
< (T(x)r])" de%pE[L(Xmu;c) Iz 1]
for some function L that satisfies Assumption C and some posi-

tive constant K. According to (35), I'(r)||r|| is bounded. Using
Assumption C and Lemma VL35, it follows that h o satisfies
Assumption A.(8). Using Lemma VLS5 it also follows that Gg
satisfies the same assumption.

It is easy to verify that the function f(r) = I'(r)r is Lipschitz
continuous and suppose its Lipschitz constant is Cr. We will

next prove that hi, _(y) is Lipschitz continuous in expectation.

Forall 0,0 c R", r,vr € RY andi =1,...,n, we have
0. (v) — B o ()
< D (r)r' €y (x, u)z — T(F) €5 (x, u)z|
< |lzl|T () x (€6 (x, u) — €5 (x, ) ||
+ 2l (C(r)r = T(@)r) €5 (%, u)]
< 2T () e[ €5 (x, u) — &) (x,u)|

+ ||zl /1€ (x, w)||Cr||r — |- (47)

Recall that £, € D). Let K and L be the bounding constant
and the bounding function for &; then

I (y) —hg (¥l < C(y) (16 -6l + [[r — ),

where C(y) = (D()||rl| + Cr)KL(x, u)|z] and y = (x,
u, z). Using the fact that I'(r)||r|| is bounded and Lemma VL5,
it follows that E[C(y)?] < oo for each d > 0. As a result, hg ,
satisfies Assumption A.(10). Moreover, replicating an argument
from [4, Sec. 5.2] it can also be shown that G satisfies the same
assumption. Furthermore, defining

he . (y ZEex [he.x(yr) —h(8,r)|yo =yl
k=0
Goly) = ZEo,x[Ge(Yk) — G(0)|yo =],

k=0

we can use similar arguments as above to establish that these
functions satisfy Assumptlon A.(8) and (10).
Lemma VL7: Let @ = (0, r). Let also D)

part of D) for functions parameterized by 6. Then P} Yo.r

be the counter-

belongs to D) for all nonnegative integers k.

Proof: A simple observation is that D(2) C D) and that
Lemma V1.4 still holds for D(2). Namely, a product function
fa95 € DPVif f, € D and g, € D?

P§gh, can be written as Pjgy . = I'(r)r P§€&,. We first
observe that Py €, € D) according to [32, Corollary 2.4]. To
verify (41), we have (in functional relationships)

1P5 go.cll < T(x)lxll[|P5€pll < T(r)l|r|| K L.
To verify (42), for 8,0 € R” and r,T € RY, we have
175 96« — Py g,
P)liell1P5€h — Pheyl + [ Ph€,ICrllr — 7]
L(r)[r| KLI® — 6] + KLCrlr — x|
(C()xfl +Cr) KL ([0 = 6] + |[r — ]},

INIA

IA

where K and L are the bounding constant and function of Pg 3 2,
respectively. |
Using the fact that gg ., g € D) K (0,r) and z(0) are

bounded and Lipschitz continuous Wlth respect to 6 due to
[32, Corollary 5.3]. It can be easily verified that (Pggp, —

7(6,r)1)¢pg € D using Lemma VL7 and Lemma VIL4.
Again, using [32, Corollary 5.3], we can obtain that h(@,r)
is bounded and Lipschitz continuous with respect to 6. As a
result, h(, r) satisfies Assumption A.(7) and (9). Similarly, it
can also be shown that G(8) satisfies the same assumptions.
Finally, it can also be verified that hg . (y) and G (y) satisfy
the same assumptions using similar arguments.

The final step in verifying all parts of Assumption A is part
(11). That follows from [4, Lemma 5.3]. Having established all
parts of Assumption A, the convergence of the Q-critic follows.

C. Actor Convergence

The actor update defined in (34) is similar to the actor update
using the unscaled gradient. The difference is that the gradient
estimate is multiplied by a positive definite matrix. This sec-
tion will present the convergence results for this type of actors.
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Define

Se(x,u) = Hopg(x, u) g (x, u),

where Hy is a positive definite matrix for all 8. Let S(6) =
(1,Sg)q and let £(0) be the limit of the critic parameter r if the
policy parameter is held fixed to 6. Similar to [12], the actor
update can be written as

Or+1 = 0k + B Se(xk, wr)riI'(ry)
= 0; + 5:S(0,)T(0;)T(£(6)))
+ Bk (Se, (xk, ux) — S(0)) i T (ry)
+BkS(01) (riD(ry,) — T(0;)L((65))) -
Define

f(Ok) = S(Gk)f‘(gk),
el = (So, (xi,ur) — S(8;)) 1 (xy),
ef”) = S(0x) (xxT(ry) — £(0:)T((61))) -

Then, the actor update becomes:
61 =6 T(2(0;))(6) + €l + €l
k+1 wt B (T(E(0:)E(0k) + 6, +¢;7 )
£(6},) is the expected actor update, while e](gl) and ef) are two

error terms due to the fact that the update is performed on a
sample path of the MDP. Using Taylor’s series expansion,

a(Br1) > a(Or) + BT (F(0:))Va(8y) £(6y)
+BVa(0y) el + 3va (6;) el

Lemma VI.8: (Convergence of the noise terms). It holds:
o > B Va(ey )Ieg) converges w.p.1.
e limy egf) =0 w.p.l.

Proof: Let éil) = (&, (xi,up) — €(0r)) I (ry)  and
& = €(0)) (ri(ry) — T(0,)T(F(61))) . where £g(x,u) =
¢9(X,U)¢9(X, u) and &(0) = <l> £9>0 = <¢9,¢9>9~ Then’
é,(;) and é§£,2> are the two error terms for the actor up-
date using the unscaled gradient [4]. It easily follows
that ei_l) = Hy, éfcw and e562> = Hy, é,(f). Furthermore,
Se, (Xi,ur) = Hgklggk (X%, ur). The lemma can be proved by
combining these facts with [4, Lemma 6.2]. [ |

Lemma VI.8 shows that e,(cl) can be averaged out and e,(f)
goes to zero. As a result, the two error terms are negligible and
the update is determined by the expected direction f(0) in the
long run.

Lemma VI.9: We have f(0) = g(0) + (1, 0), where g(0)
is a function such that Va(0) g() > 0, and sup, |(%,0)| <
C(1 — 1) for some constant C' > 0 independent of A.

Proof: According to  (5), Va(0) = (vg,Q0)g =
(1hg, PoT(0))e = £(0)T(0). For A = 1, we have

Va(0) S(0)r(0)

Notice that € (6) S (8) = 0. Specifically,

£(0)'S(0) = (o, d0)o (Ho, vty ),

H@é(e)’é(e)a

where Hg > 0 and £(0)'£(@) > 0 by construction. As a result,
£(68)'S(0) = 0, which implies that Va(0) () > 0.

The proof for A < 1 follows the proof in [4]. Let us write
r*(0) for the steady-state expectation of r;. Following the
proof of [4], we have ||t*(8) — r(0)|| < Cy(1 — A) for some
positive constant Cy. Let g(@) = S(0)r(0), where t (0) is
the steady-state expectation of r; when A = 1. Then we can
still obtain V&(0)'g(8) > 0. In addition, ||f(0) —g(0)| =
1S(0)(*(8) — (0))|| < C(1 — 1) for some C. |

Lemma VI.9 shows that the expected direction f(0) is always
a gradient ascent direction for X sufficiently close to 1. We arrive
at the following convergence result whose proof is similar to [4,
Thm. 6.3].

Theorem VI.10 Actor Convergence: For any € > 0, there ex-
ists some A sufficiently close to 1 such that the second-
order Actor-Critic algorithm satisfies limy, . inf, |Va(0;)| <
€ w.p.1. That is, 8y, visits an arbitrary neighborhood of a sta-
tionary point infinitely often.

VIl. CASE STuDY
A. Garnet Problem

This section reports empirical results from our method applied
to GARNET problems introduced in [23]. GARNET problems
do not correspond to any particular application; they are meant
to be generic, yet, representative of MDPs one encounters in
practical applications [23]. As we mentioned earlier, GARNET
stands for “Generic Average Reward Non-stationary Environ-
ment Testbed.”

A GARNET problem is characterized by 5 parameters and
can be written as GARNET (n, m, b, o, 7). The parameters n and
m are the number of states and actions, respectively. For each
state-action pair, there are b possible next states, and each next
state is chosen randomly without replacement. The transition
probabilities to these b states are generated as follows: we divide
aunit-length interval into b segments by choosing b — 1 breaking
points according to a uniform random distribution. The lengths
of these segments represent the transition probabilities and they
are randomly assigned to the b states we have already selected.

The expected reward for each transition is a normally dis-
tributed random variable with zero mean and unit variance. The
actual reward is a normally distributed random variable whose
mean is the expected reward and whose variance is 1.

The parameter 7,0 < 7 < 1/n, determines the degree of non-
stationarity in the problem. If 7 = 0, the GARNET problem is
stationary. Otherwise, if 7 > 0, one of the states will be se-
lected with probability n7 at each time step and randomly re-
constructed as described above.

To apply the actor-critic algorithm, the key step is to de-
sign an RSP pg(ulx). In this case study, we define the
RSP to be e Boltzmann distribution that is based on some
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state-action features. Good state-action features should be inter-
pretable and could help reduce the number of parameters in the
RSP.

We first define the state feature fs(x) to be a binary vec-
tor of length d, i.e., fs(x) € {0,1}%, for each state x. There
is a parameter [ specifying the number of components in the
state feature that are equal to 1. State features are randomly
generated and we make sure no two states have the same state
feature.

In [23], the state-action feature is constructed by padding ze-
ros to state features so that the features for different actions are
orthogonal. As a result, the dimensionality of the state-action
feature constructed in this manner is equal to d|U|. This ap-
proach significantly increases the feature dimensionality, espe-
cially when the action space is very large. In this paper, we use
the state-action feature described below. For each state x, and
action u, the state-action feature is:

E 1[f s(x O
fsa(xo,u) = Eﬁs(imu}( = fs)(]xo),

where Efs(3:)[u] = > p(x1]x,u)fs(x1) is the expected
feature at the next state after applying action wu.

With the state-action feature as in (48), the probability of
taking action w in state x is set to

(48)

efSA (x,u)'0/T

“0(u|x) - ZUEU efsa (x,u)'0/T7 (49)
which is a typical Boltzmann distribution with 7" being the
temperature of the distribution. With the state-action feature
described above, we can interpret —fg4 (x,u)'0 as the “en-
ergy” and the distribution prefers actions that lead to lower
energy.

A common consideration in RSP design is the so-called
exploitation-exploration trad(ﬁoff [2]. An RSP exhibits higher
exploitation if it is moqlgeg?eelcglr i.e., it is more likely to only
pick the most desirable action. However, sometimes the explo-
ration of undesirable actions is necessary because they may be
desirable in the long run. High exploitation and low exploration
may result in a sub-optimal solution. On the contrary, low ex-
ploitation and high exploration may reduce the convergence rate
of the actor-critic algorithm. Our RSP defined in (49) is flexible
because tuning 7" in (49) can effectively adjust the degree of ex-
ploration. High temperature 7" implies more exploration while
low temperature 7" implies more exploitation.

In this empirical study, we compare our algorithm with the
LSTD-AC algorithm in [14], and the four algorithms in [23],
which are henceforth referred to as BSGL1 to BSGL4, in a
GARNET problem GARNET(50, 4, 5,0.1,0). BSGL1 is based
on a “vanilla” gradient ascent and BSGL2-BSGL4 are based on
natural gradients. Henceforth, for state features we let d = 8 and
I = 3. The state-features are randomly assigned and we make
sure no two states have the same state-feature. For all algorithms,

the critic step-size is o = - “i'k‘f;/e, and the actor stepsize . =
go fk ,where o, = 3. = 1000. For the LSTD actor-critic and our
method ag = 0.1 and 3y = 0.1. For BSGL1 and BSGL2, oy =

0.1 and 3y = 0.01. For BSGL3 and BSGL4, we choose oy =
0.01 and 3y = 0.001. For all algorithms, the initial parameters

B
©
=
Y
2
< Our Alg
LSTD-AC
BSGL-1
BSGL-2
BSGL-3
BSGL-4
—0.05 : : : :
0 200 400 600 800 1000
iter(x1000)
Fig. 2. Comparison of our algorithm with LSTD and natural actor-critic
algorithms.

6, are zero and the temperature in (49) is set to 7 = 1. For our
algorithm, we choose xmin = 100 (cf. (33)).

We run each algorithm 50 times independently and Fig. 2
displays the mean of the average reward for the first 1,000,000
iterations. Table I summarizes the convergence time and con-
verged average reward for each algorithm. For each problem,
the first two columns of Table I show the mean and standard de-
viation of the reward achieved. The third and fourth columns list
the time (mean and standard deviation) it takes to convergence.
The last column shows the average CPU time per iteration (TPI).
The results are based on 50_indePendent runs for the GARNET
problem and 100 indg&\:lﬁdtgﬁ% RPHR R3S fittol problem.
Note that BSGL2 becomes numerically unstable after 500,000
iterations, so the reward of BSGL2 in Table I is the maximal
reward before numerical instability occurs and the time is the
time it takes to reach the maximal reward.

Compared to the LSTD-AC method, our method adds a
second-order critic update and takes advantage of the Hessian
estimate in the actor update. For this problem, the average CPU
time of one LSTD-AC iteration is 1288 ps. In comparison, the
average CPU time for one iteration of our algorithm is 1818 us,
which means that computing the second-order critic and the in-
verse of the Hessian adds about 41% to the computational cost.
Despite the larger CPU time per iteration, our algorithm still
converges faster than LSTD-AC because fewer iterations are
needed. The CPU time per iteration of both our algorithm and
LSTD-AC is larger than BSGL1-4. This is likely because both
our algorithm and LSTD-AC use a state-action feature vector,
whose dimensionality is larger than the one used in BSGL1-4
for value function approximations.

Among the four algorithms in [23], BSGL3 converges faster,
which is consistent with the empirical study in [23]. Compared to
BSGL3, although our algorithm uses longer time to converge, it
converges to higher value (0.33) than BSGL3 (0.24). On average
our algorithm takes only 43 seconds to reach an average reward
of 0.24 vs. 122 seconds needed by BSGL3 to reach the same
value.
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TABLE |
COMPARISON OF ALL ALGORITHMS IN A GARNET AND A ROBOT CONTROL PROBLEM.
GARNET Robot Control
Alg. Name Reward Conv. Time (s) TPI(1 s) Reward Conv. Time (s) TPI(ss s)
Mean Std Mean Std Mean Std Mean Std
Our Alg. 033 0070 727 109 1818 0.0916 000109 118 3.0 3281
LSTD-AC 029  0.091 773 9.9 1288 0.0851  0.0235 187 23 2837
BSGL-1 0.1 0083 540 75 601 0.0819  0.000731 217 2.9 2173
BSGL-2 0.16 0078 342 44 684 0.0909  0.00136 231 9.8 2313
BSGL-3 024 0093 122 1.6 678 0.0927  0.000936 142 6.4 2372
BSGL-4 028 0082 686 116 686 0.0916  0.000860 209 5.0 2319
For BSGL2, the Table Displays the Maximal Average Reward Before Numerical Instability Happens and the Time to
Reach the Reward
50 : - . actions “North” and “East” are enabled. For each state x,
- let U, (x) denote the enabled actions in this state.
¢ Transitional model. A control action does not necessarily
7 I lead the robot to the intended direction because the out-
40 A y come is subject to noise in actuation and possible surface
y . roughness in the environment. In this problem, a robot
can only move to the adjacent state in one step. For each
30 / enabled control, the robot moves to the intended direction
I Il with probability 0.7 and moves to other allowed directions
V x with equal probabilities.
r oge . .
[ ]
/ /////A Initial stafe; .The' robot starts from state xg, which is
20l / - labeled as ‘x’ in Fig. 3.
L e Reward function. There are some unsafe regions Xy,
6 which should be avoided, in the mission environment.
, There are also some goal states X that should be visited
10} V/ g as often as possible. The unsafe and goal states are dis-
- ,/ A played as black stripes and green solid colors in Fig. 3,
7 4 respectively. The objective is to find an optimal policy that
A . maximizes the expected average reward with an one-step
0 - . reward function defined b
0 10 20 30 40 50 y space
Fig. 3. View of the mission environment, where the initial region is 1, MG Xa,

marked by * ‘x’ ', the goal regions are marked by green colors, and the
unsafe regions are displayed in black stripes.

B. Robot Control Problem

In this section we compare the performance of our algorithm
with other algorithms in a robotics application. Fig. 3 shows the
mission environment, which is a 50 x 50 grid. We model the
motion of the robot in the environment as the following MDP
M:

e State space. Each state x € X corresponds to a region
in the mission environment and can be represented by a
coordinate (i, j), where ¢ is the row number and j is the
column number.

e Action space. The action space U = {uy, us, us, uy } cor-
responds to four control primitives (actions): “North,”
“East,” “South,” and “West,” which represent the direc-
tions in which the robot intends to move. Depending on
the location of a region, some of these actions may not
be enabled, for example, in the lower-left corner, only

_1, exy,

0, otherwise.

g(X7 u) =

This problem is the foundation of many complex robot motion
control problems in which MDPs are defined in more complex
ways, i.e., using temporal logic [15]-[17].

In this proRt¢m, we consider two state features that represent
the safety ang‘ﬁﬁnity of the state, respectively. For each pair
of states x;,x; € X, we define d(x;,x;) to be the minimum
number of transitions from x; to x;. We say x; € .4 (x;)—a
neighborhood of x;—if and only if d(x;,x;) < r,, for some
fixed integer 7,, given a priori. For each state x € X, the safety
score is defined as the ratio of the safe neighboring states over
all neighboring states of x. Namely,

Zye/V(x) Ii(y)
e
where I (y) is an indicator function such that I, (y) = 1 if and

only if y € X\ Xy and I (y) = 0 otherwise. A higher safety
score for the current state of the robot means it is less likely for

safety(x) = (50)
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Fig. 4. Comparison of our algorithm with LSTD and natural actor-critic
algorithms.

the robot to reach an unsafe region in the future. We define the
affinity score of a state x € X as

affinity(x) = — min d(x,y)

veXe

which is the negative of the minimum number of transitions
from x to any goal state. The state feature is defined to be

fs(x) =

and the state-action feature fs 4 (x, u) is calculated using (48). In
this application, we use the following Boltzmann distribution.

[safety(x), affinity(x)],

efs/l (x,u)'0/T
ZUGU4 x) efsa (x,u)'0/T >

where 7T’ is the temperature. Note that the only difference of (51)
with (49) is that (51) restricts to enabled actions.

Again, we compare our algorithm with the LSTD-AC
algorithm in [14] and the four algorithms in [23]. We run each
algorithm 100 times independently and Fig. 4 shows the compar-
ison of the average reward for the first 100,000 iterations. For all
algorithms, the initial 6 is (0, 5) and the temperature 7" = 5. The
step-sizes satisfy a,, = ”i w7 and 5. = Z‘o B- For LSTD-AC
and our algorithm, we set ay = 0.1, a,. = 1000 Bo = 0.01 and
B, = 1000. For BSGL1-BSGLA4, we set oy = 0.1, . = 1000,
Bp = 0.001 and 5, = 10000. We use X,in = 30 in (32).

Table I summarizes the convergence time and the converged
reward for all algorithms. Among the three natural gradient-
based algorithms, BSGL3 performs the best, but on average it is
still slower than our method in this problem. The convergence
rate of BSGL1 is much worse than the rest of the algorithms.
For this problem, we did not observe numerical instability for
BSGL2.

For the robot control problem, the average CPU time per
iteration is 3281 us for our algorithm vs. 2837 us for LSTD-
AC, that is, about 15.7% higher. The computational overhead
of the second-order critic in this problem is much lower than in

tg(ulx) = (51)

the GARNET problem, which is due to the fact that the robot
control problem has less parameters.

The CPU time per iteration of both LSTD-AC and our algo-
rithm is larger than that of BSGL1-BSGL4, but the difference
is much smaller compared with the GARNET problem. Since
significant less iterations are needed for our algorithm, it con-
verges faster than all other algorithms. Specifically, the second-
best algorithm, BSGL3, takes on average 20.3% more time to
converge.

VIII.

In this paper we propose a general estimate for the Hessian
matrix of the long-run reward in actor-critic algorithms. Based
on this estimate, we present a novel second-order actor-critic
algorithm which uses second-order critic and actor. The actor,
in particular, uses a direct estimate of the Hessian matrix to
improve the rate of convergence for ill-conditioned problems.
Building on the LSTD-AC algorithm in [16], [14], our algorithm
extends the critic to approximate the Hessian and revises the
actor to update the policy parameters using Newton’s method.
We compare our algorithm with the LSTD-AC algorithm and
the four algorithms in [23], three of which are based on natural
gradients, in two applications. The results show that our method
can achieve a better rate of convergence for many problems.

As a variant of Newton’s method, our method has similar
limitations. First, the cost of maintaining a Hessian estimate is
quadratic to the number of parameters. As a result, our algo-
rithm is only suitable for problems with relatively small num-
ber of parameters. Second, our algorithm requires the second
derivative of the policy function, which implies that the method
can not be applied if the policy function is not twice differ-
entiable or its second-order derivatives are hard to obtain. Our
algorithm is suitable for the cases where the reward is more
sensitive to some parameters VS others, leading to potentially
ill-conditioned problems that are best handled by Newton’s
method.

One direction for future work is to use part of (9) rather than
all four terms, so as to achieve a better tradeoff between con-
vergence rate and computational cost per iteration. In addition,
the algorithm described in this paper is suitable for the average
reward problem. Since Theorem IV.2 holds for all three types
of rewards, similar algorithms can be derived for the discounted
and the total reward cases.

CONCLUSIONS AND FUTURE WORK
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APPENDIX A
PROOF OF LEMMA VI.1

Lemma A.1: Suppose {vi}, {C}, {0k} are three determin-
istic positive sequences that satisfy (36) for some d;,dy > 0.
Then,

Z(max(’yk,ﬁk)/ck)d < oo forsomed > 0.
k
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Proof: Note that limy, (7 /¢;) = 0 and limy (3, /¢) = 0.
Letting d > max(dy,ds), it follows >, (v¢/Cx)? < 0o and
Dok (Br/¢r)® < oo. Further,

> (max(ye, Br)/G)" =Y (max(yi /G, Bi /Gr))"

k k

Z max( (v /)", (B /C)™)
k

< /)T D (Be/G)"

k k
< oQ.

The second equality is due to the function f(z) = z¢ being
monotonically increasing in the range [0,00) when d > 0.
The first inequality follows because both {(v:/¢.)?} and
{(Br/C)?} are positive sequences. [ ]

A. Proof of Lemma VI.1:

Proof: Define 0, = (), 1)) to be the collection of all pa-
rameters in (39). We can write (39) as

si+1 = sk + G (hy, (vr) — Gy, (yr)sk) + G Eksk.
We have

(52)

101 — Okl < (|81 — Okl + [[Tis1 —
< BiFi + v Fy
max (B, v ) (Fy + F}).

The last inequality is implied since G, > 0, v, > 0, F} and
I} are nonnegative processes. Combined with Lemma A.1, we
can see Assumptions 3.1.(1-3) in [12] are satisfied. In addition,
Assumptions 3.1.(4-10) in [12] are satisfied due to Assump-
tions A.(3—11). As a result, Thm. 3.2 in [12] holds and implies

lim | G(8y)s. — h(Bx)|| =0, (53)

IN

w.p.l.

The left hand side of (53) is equivalent to the left hand side of
the lemma. ]

APPENDIX B
PROOF OF THEOREM VI.6

We first present the following lemmas. We define the norm
|l - || of a matrix to be the norm of the column vector containing
all of its elements.

Lemma B.1: Under iteration (27), we have

|Ari1 — Agll < wFA,
[bri1 —by| < wEL,

for some processes {F}'} and {F}} with bounded moments,
where 7, is the stepsize in (27).
Proof: According to (27), we have

Apir— Ay

=Yk (Zk(¢/ok (Xi,ur) — @, ., (Ker1, Uir1)) — Ak) ~

Similar to Lemma VI.5 and because z; has bounded moments
and ¢y € D@ it can be verified that A ;. has bounded mo-
ments. This establishes the first statement of the Lemma. We
can prove the second statement of the Lemma for {by } in the
same way given that the one-step reward function g € D), first
by establishing that o, has bounded moments. |

Lemma B.2: Suppose f(+) is a locally Lipschitz continuous
function on a domain D. Let {v;} be a sequence of ran-
dom variables with bounded moments defined on D such that
lvrt1 — vk || < 75 F for some {F}, } with bounded moments
w.p.L. Then [|f(vg11) — £(v)] < fku,f for some {F,f} with
bounded moments w.p.1.

Proof: Since ||v11 —vgll < v, F, it follows ||vgy; —
v | < oo w.p.1. Since {v; } has bounded moments, v; must
be in a compact set w.p.1 for Vk. Then, by Lipschitz continu-
ity, [f(vi41) — f(vi)|| < Cllvks1 — vi|| < 4 CFy, for some
constant C'. The lemma can be proved by letting F; kf =CF.. 1

Lemma B.3: Let v = {A,b} be a vector consisting of all
elements in an m x m matrix A and a vector b € R”. The
function f(v) = A~'b is locally Lipschitz continuous with re-
spect to A and b on the domain D = {v : det(A) > €}, where
€ is a positive constant.

Proof: Let A® denote the adjoint matrix of A. The function
f(v) = A%Db is locally Lipschitz continuous as it is a polyno-
mial function, so ||f*(vy) — £*(vq)|| < C|lv; — vo|| for some
constant C' and v; and v, that belong to a compact set. Since
A = A*/det(A) and for v; = {A1,b;}, vo = {Ay,bs},
we have

1E(v1) — £(v2)]| = [|AT b1 — Ay by

= ||Afby/det(A;) — ASby/det(As)]|

1
< EHA(fbl — Ajby||

= 2 (o) ~ £ (w2)]
C

— |V — U .
6|| 1 — V|

IA

So f(v) = A~'b must be locally Lipschitz continuous on the
domain D = {v : det(A) > €}. |

A. Proof of Theorem VI.6

Proof: Recall that V(A) is the column vector stacking all
columns in a matrix A. Let vy = (V(Ay), by) where Ay, and
b;. are the iterates in (27). It follows
[Ak+1 — Agll + [[bri1 — byl
w(F{ + FY).

|[vii1 — vkl =

IN

The last equality is due to Lemma B.1 and F,f + F,f has
bounded moments. Define the function f(v;) = A, ' by, which
implies r;, = f(x;.) = A, 'bj, when det(A}) > € by (28). The
lemma can be easily proved by combining Lemma B.3 and
Lemma B.2. u
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An Actor-Critic Algorithm With Second-Order
Actor and Critic

Jing Wang and loannis Ch. Paschalidis, Fellow, IEEE

Abstract—Actor-critic algorithms solve dynamic decision
making problems by optimizing a performance metric of
interest over a user-specified parametric class of policies.
They employ a combination of an actor, making policy
improvement steps, and a critic, computing policy improve-
ment directions. Many existing algorithms use a steepest
ascent method to improve the policy, which is known to suf-
fer from slow convergence for ill-conditioned problems. In
this paper, we first develop an estimate of the (Hessian) ma-
trix containing the second derivatives of the performance
metric with respect to policy parameters. Using this esti-
mate, we introduce a new second-order policy improvement
method and couple it with a critic using a second-order
learning method. We establish almost sure convergence of
the new method to a neighborhood of a policy parameter
stationary point. We compare the new algorithm with some
existing algorithms in two application and demonstrate
that it leads to significantly faster convergence.

Index Terms—Actor-critic algorithms, Markov decision
processes, Newton’s method, robotics.

[. INTRODUCTION

ARKOV Decision Processes (MDPs) provide a general

framework for sequential decision making problems. Al-
though MDPs can be solved using dynamic programming, the
well-known “curse of dimensionality” becomes an impediment
for larger instances [1]. In addition, dynamic programming in
a standard implementation requires explicit transition probabil-
ities among states under each control, which are not available
for many applications. To address these limitations, a number
of approximate dynamic programming techniques have been
developed, including reinforcement learning methods [2], a va-
riety of techniques involving value function and policy approx-
imations (neuro-dynamic programming [3]) and actor-critic
algorithms [4].
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This paper focuses on the latter actor-critic algorithms. They
optimize a parametric user-designed Randomized Stationary
Policy (RSP) using policy gradient estimation. RSPs are poli-
cies parameterized by a parsimonious set of parameters. To
optimize the RSPs with respect to these parameters, actor-critic
algorithms estimate policy gradients using learning methods
that are much more efficient than computing a cost-to-go func-
tion over the entire state-action space. Many different vari-
ants of actor-critic algorithms have been proposed and shown
to be effective for many applications such as robotics [5],
biology [6], navigation [7], and optimal bidding for electricity
generation [8].

In an attractive type of an actor-critic algorithm introduced in
[4], a critic is used to estimate the policy gradient from observa-
tions on a single sample path and an actor is using this gradient to
update the policy at a slower time-scale [4]. The estimate of
the critic tracks the slowly-varying policy asymptotically, using
first-order variants of the Temporal Difference (TD) learning
algorithms (TD(1) and TD())). However, it has been shown that
second-order learning methods—Least Squares TD (LSTD)—
are superior in terms of rate of convergence (see [9]-[14]).
LSTD was first proposed for discounted cost problems in [11]
and was shown to have the optimal rate of convergence in [12].
In [14], LSTD is used in the critic of an actor-critic algorithm,
resulting in the LSTD Actor-Critic algorithm (LSTD-AC).
Later, this algorithm was applied to applications of robot
motion control with temporal specifications [15]-[17]. Despite
faster convergence than TD-based methods, LSTD-AC exhibits
slow convergence for ill-conditioned problems in which the
performance metric is more sensitive to some parameters in the
RSPs than others. The reason is that it uses a first order actor
with an “unscaled” gradient, commonly known as steepest
ascent, to update the policy. This often leads to a “zig-zagging”
behavior in order to converge to a stationary point.

Several algorithms have been introduced which use a second-
order method in the actor. The “natural” gradient method was
originally proposed for stochastic learning [18], [19]. [20] pro-
posed a different estimate of the natural gradient but its accuracy
can be influenced by the choice of basis functions; an episodic
algorithm was then proposed to guarantee the unbiasedness of
the estimate. These methods use the inverse of the Fisher infor-
mation matrix to scale the gradient. [21] suggested several incre-
mental methods using the natural policy gradient. [22] presented
an online natural actor-critic algorithm using a natural gradient
and applied it to a road traffic optimization problem. Based on
[20], [23] proposes three fully incremental natural actor-critic

0018-9286 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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algorithms. It also describes a method that is based on a
“vanilla” gradient and provides extensive empirical comparison
of all algorithms in test problems (so called Generic Average
Reward  Non-stationary  Environment Testbed—GARNET
problems [23]).

Although natural gradients are very effective in stochastic
learning, there are alternative ways to scale gradients. The
Hessian matrix of the performance metric with respect to the pa-
rameters is commonly used to improve the rate of convergence.
[24] proposes an estimate of the Hessian matrix for a discounted
reward problem using a sample path of an MDP. Although the
relationship between the Fisher information matrix and the Hes-
sian matrix has been briefly discussed in [19] and [25], it is still
not fully clear how they are related in the actor-critic framework
and why natural actor-critic algorithms work well in practice.

In this work, we develop a more general estimate of the
Hessian matrix for actor-critic algorithms. In Section V-C, we
demonstrate that our Hessian estimate degenerates to the Fisher
information matrix used in natural actor-critic algorithms if we
assume no knowledge of the state-action value function and ig-
nore second derivatives with respect to the parameter vector. In
this light, natural actor-critic algorithms can be seen as equiv-
alent to quasi-Newton methods that assume no knowledge of
the state-action value function when approximating the Hessian
matrix. In fact, [12] proposes a quasi-Newton actor-critic
algorithm that is very similar to the methods in [20].

This paper proposes a method that uses LSTD-based crit-
ics to provide estimates of both the gradient and the Hessian
and utilizes the Hessian estimate in the actor to update policy
parameters.

We establish almost sure convergence in the neighborhood
of a stationary point (with respect to policy parameters) of the
performance metric. We remark that a subset of the results ap-
peared in a preliminary conference paper in [1]. The present
paper contains all proofs concerning the Hessian estimate, the
convergence analysis which was absent from [1], and a much
more extensive numerical evaluation of our method both in
GARNET problems and in an application from robotics.

The remainder of the paper is organized as follows: Section II
provides background on MDPs and establishes some of our no-
tation. Section III presents the estimation of the policy gradient.
Section IV develops the estimate of the policy Hessian, which
is the foundation of the new algorithm. Section V describes
our method and Section VI proves its convergence. Section VII
presents two case studies.

Notation: Bold letters are used to denote vectors and matrices;
typically vectors are lower case and matrices upper case. Vectors
are column vectors, unless explicitly stated otherwise. Prime de-
notes transpose. For the column vector x € R" we write x =
(z1,...,2,) for economy of space, while ||x|| denotes the
Euclidean norm. The expressions > 0 and >~ 0 denote positive-
definiteness and positive-semi-definiteness, respectively. Vec-
tors or matrices with all zeroes are written as 0 and the identity
matrix as I. For any set., || denotes its cardinality. € denotes
the parameters in parameterized policies. If not explicitly speci-
fied, V and V2 denote the gradient and Hessian w.r.t. 8. To sim-
plify the notation, a lot of equations in this paper are represented

using functional notation and the domain of these functions is
assumed to be X x U, where X and U are the state and the
action space, respectively, of the MDP. Vector-valued functions
are denoted using bold letters while scalar-valued functions are
denoted using normal letters. O and 1 are functions that assign
the value 0 and 1 to all state-action pairs, respectively.

Il. MARKOV DECISION PROCESSES

Consider a discrete-time Markov Decision Process (MDP)
with a finite state space X and an action space U. Let x;, € X
and u, € U be the state of the system and the action taken
at time k, respectively. Let g(xj,uy.) be the one-step reward
of applying action u;, when the system is at state x;. We will
use xg to denote the initial state and p(xXy .1 |Xy,us) for the
state transition probabilities, which are typically not explicitly
known. We assume that {x;, } and {xy,, uy, } are ergodic Markov
chains [12].

This paper considers policies that belong to a parameterized
family of RSPs {ug : @ € R™}. That is, given a state x € X
and an n-dimensional parameter vector 6, the policy applies
action w € U with probability g (u|x). Given a fixed policy
e (u|x), the history of g(xy,uy) can be represented by a ran-
dom process. Let Fg{-} be the expectation with respect to this
random process; the long-term average reward for a policy g
is @(0) = Bo{limy .o ~ 370 [g(x5, up)]}-

In average reward MDP optimization problems, the perfor-
mance metric is the long-term average reward & (@) and the
objective is to optimize a(@). Similar problems can be defined
by using discounted reward or total reward as performance met-
rics [12]. Note that the discounted reward and the total reward
can be treated as the average reward of an artificial MDP (See
Chapter 2 of [12]). Without loss of generality, this paper focuses
on the average reward case. Corresponding results for the other
cases can be obtained with modifications similar to Sec. 2.4 and
2.5 of [12].

Ill. ESTIMATION OF POLICY GRADIENT

The state-action value function Qg : X x U — R (some-
times referred to as the (Q-value function) of a policy ug is
defined as the expected future reward given the current state
x and the action u. Qg is the unique solution of the Poisson
equation with parameter 6 [26], [12] (written as a functional
relationship)

Qo =g — a(0)1 + PeQo,

where Py is the operator of taking expectation after one transi-
tion. More precisely, for any real-valued or vector-valued func-
tion f defined on X x U,

)]

(Pof)(x,u) = > p(ylx,u)ne(v]y)f(y,v) (2)
y.v
forall (x,u) € X x U.
Let now
¢0(X7 u) = VIHMG(u‘X)7 (3)

141
142
143
144
145
146

147

148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174

175

176
177
178
179
180
181

182
183
184

185
186



187
188
189
190
191
192
193
194
195
196

197
198

199

200
201
202
203
204
205
206
207
208
209
210
211
212

213

214
215
216

217
218
219

220
221

WANG AND PASCHALIDIS: ACTOR-CRITIC ALGORITHM WITH SECOND-ORDER ACTOR AND CRITIC 3

where 1 (x, u) = 0 when x, u are such that yig (u|x) = 0forall
0’s.Itis assumed that 14 (x, u) is bounded and continuously dif-
ferentiable. Since 19 (u|x) is the probability of action w at state x
for 0, 1o (x, u) is the gradient of the log-likelihood In 19 (u|x).
We write 1g = (¥, ...,%4) where n is the dimensionality
of 6.

For each 6 € R", let ng(x, u) be the stationary probability
of state-action pair (x, ) in the Markov chain {xy, uy }. For
any 6 € R", we define the inner product operator (-, -), of two
real-valued or vector-valued functions @)1, Q2 on X x U by

<Q17Q2>0 = ZUG(X7U)Q1 (X7U)Q2 (X7 u) 4)

A key fact underlying actor-critic algorithms is that the policy
gradient of @(0) can be expressed as [27], [12]
0a(0)
00;

=(Qo,vp)g,i=1,...,n. (5)

IV. ESTIMATION OF THE POLICY HESSIAN

Earlier work in actor-critic methods has used critics based
on TD(1), TD(L), and LSTD methods to estimate the policy
gradient V() [4], [28]. Since we are interested in a Newton-
like gradient ascent update in the actor, in this section we develop
an estimate for the policy Hessian matrix V2 &(6).

Applying the operator V on the real-valued function gg (x, u)
parameterized by 6, we obtain a vector-valued function, abbre-
viated as Vgg, which maps (x, u) to Vgg(x, u). For a vector-
valued function fp : X x U — R" parameterized by 8, which
can be denoted as fg = (fg,..., f5"), we define Vfy to be an
n x m matrix-valued function whose ith column is V f5.

Lemma IV.1: For any vector-valued function fg : X x U —
R™, we have

V (Poty) = Py (Vfg n ¢9f’9) )

Proof: For all state-action pairs (x,u) € X x U, we have

V(Pofp)(x,u) = V (ZP(Y& U)Me(V|Y)fe(y,V)>

v

Y pIx W)V (no(v]y)fe(y,v)). (6)

In the above, pg(v|y)fo(y,v) is a function defined on X x U,
which is abbreviated as ugfy. Using the chain rule and the
definition of )4, we obtain

V (nefe) = 116VEe + Viefy

= Mo (er + ¢9in) :

The lemma can be proved by substituting (7) to (6). [ |
Lemma IV.1 provides a way to interchange the Pp and V
operators. Similar to the definition of 14, we define

(7

(8)

where @g(x,u) = 0 when x, u are such that pg(u|x) = 0 for
all 0. g is the Hessian matrix of the log-likelihood In 19 (u|x).

wo(x,u) = V7 In pg(ulx),

The following theorem establishes a similar result to (5) for the
Hessian matrix V?&(6).

Theorem 1V.2 (Hessian Matrix of Average Reward): Let
¢g : X x U — R be the scalar-valued (i, j)-th component of
pg(x,u). The second-order partial derivative of @(@) with
respect to 6 can be represented as:

0*a(0) i ij
505, = (Qo-vith), + (@044,
aQO j aQG i
(M (%)
foralli,j =1,...,n, where (-, -), is the inner product operator
defined in (4).

Proof: Applying the V operator on both sides of (1) and
using Lemma IV.1 with fg being the scalar function Qg, we
obtain

Va(0)1+ VQo = Po (19Qe + VQo) . (10)

Defining the vector-valued function fg = ©gQg + VQe and
applying again the V operator on both sides of (10), we have

V(Vd(@)l + VQQ) = V(ngg),
which due to Lemma IV.1 implies
V26(0)1 + V2Qo = Po (Vfg + v,z;ef;,) .y

Take now the inner product with 1 on both sides of (11) and
notice that because 7g(x, u) is the stationary probability under
0, it holds (1,h), = (1, Poh), for any function h defined on
X' x U. We have

V2a(0) + (1, V?Qo), = <L Vi + ¢9f;>0 .

Using the definition of fy and the fact Vfg = V(¢yQg) +
V2Qg, we obtain

V2a(0) + (1, V?Qo)y = (1, V(16Qo) + V*Qo),
+ (L Qowotp + V),

Applying the chain rule, noticing that Vipy = (g, and reorga-
nizing the terms in (12) it follows

V2a(0) = <Qe,¢9w’9>0 +(Qo, Po)e

(12)

+ (VQo.wy)  + (6. V@) . (13)

]

Corresponding results for the discounted reward and the total
reward cases can be derived based on the relationship between
these three problems we discussed earlier. Intuitively, the dis-
counted and total rewards can be considered as average rewards
in some artificial MDPs. More detailed information about con-
structing the artificial MDPs is available at Sec. 2.4 and Sec. 2.5
of [12].

Theorem V.2 states that the Hessian matrix V?&(0) can be
decomposed into four terms, all of which take the form of inner
products. The first two terms are the inner products of the state-
action value function Qg with ¢}, and ¢ . Because of the
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similarity between the first two terms and (5), we can use similar
techniques as in the LSTD-AC to estimate them.

For the last two terms in (13) we need an estimate of VQg.
Note that (10) is the counterpart of the Poisson equation (1) for
VQo, where Pg(109Qg) plays the role of the one-step reward.
However, this equation can not be directly used to estimate VQg
because it is quite hard to obtain Pp(1yQe). To address this
problem, we present the following theorem.

Theorem IV.3: Let the function Qg : X x U — R"™ be the
solution of the equation

Va(8)L+ Qo = 19Qo + PoQo,

and VQg : X x U — R" be the solution of (10). Then,

a4

(VQo.wy), — (Qo.wp) =~ (Qartbowy) . (15

Proof: Applying the Py operator on both sides of (14) and
using the fact that Pyl = 1, we obtain
Va(6)1+ PaQo = Po(teQo + PoQo). (16)

Comparing (10) and (16), it follows PyQe = VQs. As a result,
(VQo.wy), — (Qo9), = (VQo — Qo).
= <P9Q9 - Q9,¢$>9
= (~45Q0 + Va(O)L9p)
= —(Qo.wow)  +Va(0) (L) . a7)
where the third equality above used (14).

Let now 7g(-) be the stationary probability of the Markov
chain {x}, } under RSP 6. Then, 7g(x, u) = 7o (x) e (u|x), and

<l7 ’lﬁlg>0 = Z Tlo (Xv U)"be (Xv u)l
= ¥ n0(x,u) Vg (ulx) /(po(ulx))

= > m(x) ) Vug(ux)

=0, (18)

where in the second equality we used (3) and the last equality
follows from the fact that ) pe(u|x) = 1 for all 6. Eq. (15)
follows by combining (17) and (18). [ |

By symmetry to Eq. (15), it also holds that

(0. VQ0), — (¥6.Qo), =~ (Qo. Vo), . (19

Substituting (15) and (19) into (13), we obtain a new es-
timate of the Hessian matrix V2a(0) given in the following
Corollary.

Corollary 1V4: With Qg being a solution of (14), the Hes-
sian matrix V?@(0) can be expressed as:

Va(f) = <Q97 Po — 1/’9"#/9>9 + <Q9’ ¢/0>9

+ (0. Qo ), - 0)

A. Function Approximation

We can calculate Qg and Qg by solving (1) and (14). How-
ever, when X x U is very large, the computational cost becomes
prohibitive. This problem can be addressed using function ap-
proximation techniques. One popular type of function approx-
imation is to express (Qp and each component of Qo with a
linear combination of feature functions. We choose a set of fea-
ture functions ¢y = (Yh, vy , Vot 4,5 =1,...,n), where
¢ (x,u) is an N-dimensional vector for Vx,u € X x U with
N = (2n? 4 n) and n being the dimensionality of €. Similar to
other actor-critic algorithms, the basis functions ¢4 need to be
uniformly linearly independent [4], [12], which can be enforced
by choosing a suitable structure of policies. Some additional
features can be added depending on the particular application.
This added flexibility could be useful in a number of ways as it
has been discussed in [4].

Similar to [12], we consider the following linear approxima-
tion for Qg

reRY.

Qfg (X, ’LL) = ¢),9 (X, ’LL)I‘,

Let us now view the inner product operator in (4) for real-
valued functions in X x U as an inner product between vectors
in RXIIUl and denote by |||| 5 the induced norm. Also denote by
®y the low-dimensional subspace spanned by ¢g. If we define

(22)

2

* : ro_
r' = arg min || — Qelle,
then Q‘g is the projection of Qg on Pg. Similar to (2.2) of [4],
<Q§*7¢L0>9 = <Q01 Uﬁ9>9 )
(@56 —vovh) = (Qo.vd — vivh),

foralle,y =1,...,n.

(23)

Define the linear approximation of Q%, the ith component of
Qo. as
% (x,u) = gp(x,u)t’,  teRY. (24
Again, forall¢,5 =1,...,n and
ti* — : At A , 25
arg min [|Q — Qolle (25)

Qg* is the projection of Qle on Py. Similar to (2.2) of [4], we
have

(@5 vh), = (Qovd),- 26)

Equations (23) and (26) state that the projections of Qg and
Q.g on the low-dimensional space ®g are sufficient for estimat-
ing (20). This reduces the computational cost for obtaining Qg
and Qg since we only have to compute the relative parsimo-
nious vectors r* and t*, i = 1, ..., n, while it does not alter the
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inner products needed to compute the gradient V& (8) (cf. (5))
and the Hessian V?&(0) (cf. (20)).

V. A SECOND-ORDER ACTOR-CRITIC ALGORITHM
A. Critic Step

We use the Least Squares Temporal Difference (LSTD) (see,
e.g., [14]) with parameter A to estimate r* and t'*, i = 1..., n,
defined in (22) and (25), respectively. Recall that x; and
uy denote the state and the action of the system at time k,
respectively. Let ay denote an estimate of the average re-
ward at time k. z; € R denotes Sutton’s eligibility trace
and A; € RY*Y a sample estimate of the matrix formed by
Z (d)/ek (Xp, up) — d)lek (Xk+1,Uuk+1)), which can be viewed as
a sample observation of the scaled difference of the features
between time & and time k + 1. b, € RV refers to a statisti-
cal estimate of the single period relative reward with eligibility
trace zy. Let also use the initial values: A is an identity matrix,
«y 18 zero, and by and z, are column vectors with all zeros. To
estimate r*, we use the following Q-critic update

g1 = ap + (g0, ur) — o), 27
Zip1 = Azg + G, (Xi, ur),

Apir = Ay +y(zew, — Ap),

bri1 = br + W [(g(xk, ue) — o )zi — by,

where Wi, = ¢g, (X, ur) — Pg, (Xr+1,ur+1) and 7y is a step-
size. Let rj, be the estimate of r* at time k; we set

—1
A bria,
Tpt1 =
ry,

if det(Ay > €,
( k+1) e ( )
other wise,

where € is a small positive constant used to judge whether Ay, |
is “ill-conditioned” or not. A should be invertible when & is
large enough [29], [30]. Our Q-critic (27) is the same with
the critic update of the LSTD-AC algorithm in [14] and (28)
estimates the same r*. In addition, we add another critic, named
as Q-critic, to estimate t'*, 4.

Let now_v}lJ7 1 =1,...,n, be a column vector with all zeros.
Let also 73, ¢« = 1,...,n, be a scalar set to zero. Notice the
relationship between Eq. (1) for the Q)-function and Eq. (14) for

the Q-function. To estimate I:i*, i =1,...,n, defined in (25),
we use the following LSTD Q-critic update

7712;-+1 = 777;+Ck((bi—773§)7 i=1,... (29)

Vi = Vi + Gl(gp —m)ze = Vi,
where g}, = I(r),)r), dg, (X1, ur)¥p, (i, u) is an estimate of
the ith component of 19 Qg which plays the role of the one-step
reward in (14). (). is the stepsize of the Q-critic and [(ry)isa
function that restricts the influence of the error in the estimate
r;.Let t',i, be the estimate of t'* at time k. Similar to the Q-critic,

we set
-1 i
- A1 Vigr
k+1 =

th,

if det(Ay > €,
( k+1) = ( )
O'[l’lCI‘WiSC7

for i = 1,...,n. Note that the Sherman-Morrison update of a
matrix inverse [22] and the matrix determinant lemma [31] can
be applied to reduce the computational cost of calculating A,:i 1
and det(Aj. 1) in (28) and (30).

B. Actor Step

Let Qp(x,u) = I'(r)r'¢pg(x, u) and QY = T(tHt" g (x, u)
be our estimates for (g and @9 givenrandt,i=1,...,n.
As mentioned above, the function I'(-) restricts the influence
of the error in r and t’, respectively (cf. (21) and (24)). For
convenience of notation, let T = (t!,...,t") and denote by
QF =(QY,...,QY") a vector-valued function mapping X x
U onto R” with ith element equal to Qg Motivated by (20)
and using just a single sample to estimate the expectation (in
a standard stochastic approximation fashion), we also define
ﬂgvr,T tobe ann x n matrix-valued function definedon X x U
and parameterized by (0, r, T) as follows

Ut = Qb(po — %ote) + Qoo +v6(Q3). (31

Let H; be the estimate of —V2a(0) at time k with initial
condition Hy = I. The update rule for Hy, is:

- H;, + Uy,
k+1 =
k> otherwise,

if Uy, = 0,
(32)

where U, = —IAJgk__”, 1, (X1, ux). Note that Hy, >~ 0 because
it is updated only when Uy, > 0. Let x;. be the number of times
the top branch in (32) is executed by iteration &k and define

. I,
, =
Hk7

which will be used to avoid a noisy estimate in the initial updates.
The actor update takes the form:

01 = 0y + Bl (vy)ry P, (i, un)Hy g, (X1, up), (34)

where [y, is a stepsize.

In the update (32), we make sure that our scaling matrix is
always positive definite. Notice that Hj, is the estimate of the
negative Hessian matrix because we are dealing with a maxi-
mization problem. In particular, the Hessian matrix will gener-
ally be negative definite in the vicinity of a local maximum and
we expect that the upper branch of the update (32) will be used
as we approach such a point. The iteration (34) takes a scaled
gradient ascent step, with the scaling matrix being positive
definite.

The sequences {7} and {(;} correspond to the stepsizes
used by the critics, while 3 and I'(r;) control the stepsize for
the actor. The function I'(ry) is selected such that for some
positive constants C; < Cs:

[T (r) € [C1, O,

if Xk < Xmin (33)

otherwise,

vr e RY,

\ Collr — 7
[T(r) =T (@) < ol
L [|efl + (1]

(35)
vr, i e RY.

An example that satisfies these requirements is I'(r) =
min(1, D/||r||) for some positive constant D.
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6
Stepsize

- | Q-Critic | Cr

3

&

Q-Critic
| Actor | B

Fig. 1. Relationships between the critics and the actor.

We say a stepsize sequence { f}, } is Square Summable but Not
Summable (SSNS) if fr >0, > 1" f£ <ocoand > ;o fr =
oo. For the algorithm to converge, {¢;. }, {7}, and {3; } should
be SSNS and satisfy

Z(ﬁk/%)dl < o0, Z(%/Ck)dz <oo,  (36)
k k
for some d;, dy > 0.

The relationships between the two critics and the actor are
shown in Fig. 1. The Q-critic and the Q-critic generate estimates
r; and Ty = (t},...,t}) which yield linear approximations of
Qo and Qg, respectively. Both critics need to converge faster
than the actor in order to track the changes in 8. Moreover,
because the observed derivative q,ig used in the Q-critic depends
on ry, the Q—critic is updated faster than the Q-critic so that it
can track changes in r;. We next present a result establishing a
relationship between the stepsize sequences.

Proposition V.1: Suppose {(; } and {5, } are two SSNS step-
size sequences that satisfy

D (Br/G)! < o0,

k

Lety, = (.0 )'/2. Then, {7, } isalso SSNS and {7}, {Gk} ,
{¢y } satisfy (36).

Proof: Due to the assumption in (37), limy (81 /i) = 0,
which implies that there exists a positive constant K such that
forVk > K, i, < (.. Since {3} } is SSNS, it follows

D= (GB)*=Ci+ D B =ox,
k

k k=K+1

for some d > 0. 37

where Cy = "1, 7. Furthermore, since {¢; } is SSNS

27142 :ngﬂk §02+ Z C}? < 00,
k k

k=K+1
where Cy = Z,{LO 7,%. Finally, letting d; = do» = 2d and due to
(37) we have

D Be/w)™ =D (/)" =Y (Br/G)! < oo
k k k
|
Proposition V.1 simplifies the selection of stepsizes. We just
need to select 3y and (;; first and let v, = (Cx O )1/ 2 An exam-
ple of {¢;}, {7}, and {0} that are SSNS and satisfy (36)

is: ¢ = 1/k, By = ¢/(klnk), where k> 1 and ¢ > 0, and
= (GeB)'? = (1/k)/c/Ink.

C. Relationship With Natural Actor-Critic Algorithms

In our approach, we use the Hessian matrix to scale the gra-
dient in order to improve the convergence rate. A similar idea
is to use the Fisher information matrix to scale the gradient. It
was first proposed by [19] and several related algorithms fol-
lowed [20], [23], [21]. This section discusses the relationship
of the Fisher information matrix with the Hessian matrix for
actor-critic algorithms.

Suppose 71g(x,u) is the stationary state-action distribution
when the RSP parameter equals 6. [20] states that the Fisher
information matrix is equal to

Fo = Z e (x,u)V In 119 (u|x)V In p1g (u|x)

X, U

(38)

which can also be written as <l, ¢9w:9>6, where g =

V 1n pg(ulx) (cf. (3)).

Let us now compare this expression with the true Hessian
matrix (cf. (9)). If we set Qy = 1, hence, VQg = 0, and ignore
second derivatives with respect to 8, then the Hessian matrix
degenerates to the Fisher information matrix in (38). In this
sense, natural actor-critic algorithms are quasi-Newton methods
that approximate the Hessian without utilizing the state-action
value function Qg. In contrast, our method takes advantage of
the state-action value function.

VI. CONVERGENCE

A. Linear Stochastic Approximation Driven by a Slowly
Varying Markov Chain

Our Q-critic in (27) has the same form as in [14] so its
convergence can be proved in a similar way. In the Q-critic
(29), the increment ¢, depends on the parameter vector ry.
To facilitate the convergence proof of the Q-critic, this sec-
tion generalizes the theory of linear stochastic approximation
driven by a slowly varying Markov chain developed in [12]
to the case where the objective is affected by some additional
parameters r.

Let {y}. } be a finite Markov chain whose transition probabili-
ties depend on a parameter @ € R". Let {hg,(-) : 0 € R",r €
R* } be a family of m-vector-valued functions parameterized by
0 c R"” andr € RV . Let ;. be some m x m matrix. Consider
the following iteration to update a vector s € R™:

st+1 = Sk + (e (ho, v, (Y1) — Go, (Yr)sk) + G Ersr. (39)

In the above iteration, s; € R™ is the approximation vector.
hg,(-) and Gg(-) are m-vector-valued and m x m-matrix-
valued functions parameterized by 6, r and 6, respectively. Let
E [] denote expectation. In order to establish the convergence
results, we make the following assumptions.
Assumption A:
1) The sequence {(; } is deterministic, non-increasing and
SSNS.
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2) The random sequence {0} satisfies ||@x+1 — 0| <
Oy F}, for some process {F}. } with bounded moments,
where {0} is a positive deterministic sequence such
that 3, (B /¢ )? < oo for some d > 0.

3) E; is an m x m-matrix valued martingale difference
with bounded moments.

4) The (random) sequence {r; } satisfies |[ry.1 — 1y <
~i F, for some nonnegative process { . } with bounded
moments, where {7, } is a positive sequence such that
> (7 /Cr)® < oo for some d > 0.

5) r;, converges to r(0;) when k — oo,
limy, o Hrk - f‘(Okf)” =0, Wpl

6) (Existence of solution to the Poisson Equation.) For each
0 and r, there exists h(0,r) € R™, G(0) € R™*™,
and corresponding m-vector and m X m-matrix func-
tion fng('), Gg(-) that satisfy the Poisson equation.
That is, for each y,

namely,

IAl@,r (Y) = hO,r(Y) - B(ea I‘) + (PGﬁG,r)(Y)a
Go(y) = Go(y) — G(6) + (PeGo)(y)

7) (Boundedness.) For all € and r, we have
max(|[h(8,r)|],|G(8)||) < C for some constant C.

8) (Boundedness in expectation.) For any d > 0, there ex-
ists Cy > 0 such that sup, E[||fs, (y&)||?] < C4 and
supy, E[||ge, r, (&)||Y] < C4, where fo(-) represents
Go() and Gg(-), and gg,(-) represents hg . (-) and
hg . (-).

9) (Lipschitz continuity.) For some constant C' > 0, and
for all 8,0 € R", |G(0) — G(8)|| < C||@ — 8||. For
all 8,0 € R" and r,t € RY, |h(0,r) — h(8,7)| <
C(]16 = [ + [lr —f]).

10) (Lipschitz continuity in expectation.) There exists a
positive measurable function C(-) such that for ev-
ery d > 0, sup; E [C(yx)?] < cc. In addition, for all
0.0 € R", [fo(y) — fo)|l < C()]0 — 0], where
fo(-) represents Gg(-) and Gg(-). For all 0,0 €
R" andr,r € RV, [|go.x (¥) — 8o, (¥)I| < Cy) (|6 —
0|| + ||r — F||), where gg . (-) represents hg,(-) and
he . (+).

11) There exists a > Osuch that foralls € R™ and @ € R",
s'G(0)s > als|>.

Lemma VL 1: If Assumptions A.(1-11) are satisfied, then

limy oo [ G(05)si — (B, p)]| = 0 wop.1.

Proof: See Appendix A. |

Theorem VI.2: If Assumptions A.(1-11) are satisfied, then

limy oo [|G (01) s — h (01,7(0))) || = 0 w.p.1.

Proof: We have

1G(6)sr. — (6, 7(61))]
< |G (Or)sr — (O, ri)|| + [[0(Oy, ri) — 1(O, T(6r))]|.

Due to Assumption A.(9), we have

Jim |h 6k, i) —h (0, 5(0:)) || < C lim ffry —(64)ll;

where C'is a constant. Combining the above, we have
0< lim |G(8;)s; — h(65,T(61))]
< 0+ lim (8, ri) — h(By,F(6)))]|
< 0+C lim ry —7(8)]

= 0, w.p.1,

where the second inequality follows from Lemma VI.1 and
the equality is due to Assumption A.(5). We conclude that
limy, oo ||G(0k)sk —h (Ok, F(Ok)) || =0, wp.l.

B. Critic Convergence

In this section, we will use the results in Section VI-A to prove
the convergence of the Q-critic and the Q-critic presented in
Section V-A. Before presenting the convergence results, we first
state the following assumptions and definitions.

Assumption B: There exists a function L : X — [1,00) and
constants 0 < p < 1, b > 0 such that for each 8 € R",

Eo.[L(x1)] < pL(x) + by (x), vx € X, (40)
where Eg «[-] denotes expectation under € with initial state x,
I+ (+) is the indicator function for the initial state x* being equal
to the argument of the function, and x; is the (random) state of
the MDP after one transition from the initial state.

The assumption above is identical to [12, Assumption 2.5].
We call a function satisfying the inequality (40) a stochastic
Lyapunov function. Let L : X x U — [1, 00) be a function that
satisfies the following assumption.

Assumption C: For each d > 0 there is K; > 0 such that

Eox|L (x,Up)"] < K4L(x), vxeX,0eR”,
where U is the random variable of the action at state x.

Note that if any function is upper bounded by a function L
as described in Assumption C, then all its steady-state moments
are finite.

Lemma VI.3: If two functions Ly : X x U — [1,00) and
L, : X xU — [1,00) satisfy Assumption C, then so does
L¢L,.

Proof: For any two random variables A and B, E[AB] <
(1/2)(E[A?] + E[B?]). As a result, we have

Eox [Ls(x,U)"Ly(x,Up)"]

1 1
§ §E9,x [Lf(X, U0)2d] + iEB"X [Lg(X, U0)2d]

1 -
< §(Kgd +K35,)L (%),

where Kg , and Kj, are the bounding constants of f and g
appearing in Assumption C. |

Definition 1: We define D?) to be the family of all functions
fo(x, ) that satisfy: for all x € X and v € U, there exists a
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constant & > 0 such that
[fo(x,u)|| < KL(x,u), V0 € R", (41)

lIfo(x,u) — f5(x,u)| < K||0 — 0||L(x,u), V0,0 € R",
(42)

where the bounding function L satisfies Assumption C.
Lemma VIL4: If fg,ge € D), then fo + go € D2 and
fggg € 'D(Q).
Proof: The proof for fg + gg is immediate; we focus on
foge. Inequality (41) can be proved using Lemma 4.3(f) of [4].
To prove inequality (42),

Ifoge — fogall = Ifoge + fogs — fogs — fogsll
< lfolllige — goll + llgalllife — foll
< 2K KLy Ly |10 = 6],
where K and L are the bounding constant and the bounding

function for f in (41) and (42), while K, and L, are the cor-
responding quantities for g. According to Lemma V1.3, L, L,

also satisfies Assumption C, which completes the proof. |
We assume ¢ € D2 which
is the same with Assumption 4.1

of [12]. This assumption ensures that the feature vector
¢o = (¢g,...,¢p ), as a function of the policy parameter 6,
is “well behaved.” Given our feature vector definition, notice
that this assumption requires that the RSP function family pg
is twice continuously differentiable for all @ with bounded first
and second derivatives that belong to D(?). We also assume that
the one-step reward function g € D(?).

The critic consists of two parts: a ()-critic that estimates Qg
(cf. (27), (28)) and a Q critic that estimates Qg (ct. (29), (30)).
The Q-critic is exactly the same with the LSTD-AC algorithm
[14], whose convergence has already been proved in [14] under
the assumptions imposed. For the Q-critic, denote by V(A) a
column vector stacking all columns in a matrix A. The Q-critic
can be written as in (39) if we let

!

se= [ Mg B p)] L @)
- MF(r)r'd)e(X’U)ﬂbe(Xﬂ)
ho,r(}’) = [F(r)r/tﬁg(x’ u)V(Zi/)/g(Xa u)J7

Gol(y) = [diag(z,.?.,z)/M (I)]

='k:07

where diag(z, . .., z) denotes an nN x n block diagonal matrix
with every diagonal element being equal to z, y = (x,u,z), M
is an arbitrary (large) positive constant whose role is to facilitate
the convergence proof, and at any iteration k of (39) ry, iterates
as in (28). The stochastic process {z } is the eligibility trace
iterating as in (27).

To prove the convergence of the Q-critic, we just need
to verify Assumptions A.(I-11). It is easy to verify that
2z, = Y1 A1 g, (x,up). First, we establish the following
lemma.

Lemma VI.5: For every d >0, we have
supy, E[L(xx, ur,)?||zx[|?] < oo, where L:X x U — [1,00)
is a bounded function that satisfies Assumption C.

Proof: According to the triangle inequality, we have

k-1

lz ] = 11D A" o, (i, )

=0

-
—

< D M Dlgg, (1, w) |
l

Il
o

k—1
< K Z AN (g, w)
1=0

for some bounded function L; that satisfies Assumption C and
some positive constant K, where the last inequality is due to
Py, € D) In addition, we can multiply with L(x;., u;,)? and
take expectation on both sides of the above, which yields

E[L(xk,ur ) ||z || ]

k—1
< Kl Z)\d(k*l*l)E[L(

g, k) Ly (x,w) ] (44)
1=0

Similar to the proof of Lemma VI.3,

E[L(Xk,uk)d[/l (Xl, ul)d] (45)
1 1
< EE[L(xk,uk,)Qd] + §E[L1(x1, u)*?] < oo.
Combining (44) and (45), we establish that E[L(x},, uy, )¢ |z ||¢]
is bounded. |
Theorem VI.6: Under iterations (27) and (28),

lrrsr — ol < v Fy, w.p.1, (46)

for some random sequence {F} } that has bounded moments,
where {7} } is the stepsize in (27).

Proof: SeeAppendix B. |

Using SSNS stepsizes according to (36), Assumptions A.(1)
and (4) will be satisfied because of Theorem VI.6. Now, ||r||T'(r)
is bounded because of (35). According to (31), U, has bounded
moments because g (X, u), Pg (X,u), Qg, and Qg, Vi, have
bounded moments. H;. and I:Ik should also have bounded mo-
ments because the update in (32) is applied only when Uy, is pos-
itive definite. As a result, F(rk)rk ®o, (X, uk)Hk Yo, (X, ur)
should have bounded moments, thus, Assumption A.(2) holds.
Assumption A.(3) is trivially satisfied. In addition, because the
Q-critic converges, we have

khj{olo Hl‘k - f(Bk)|| =0, w.p.1,
which is Assumption A.(5).

For + = 1 ,n, define the function 59 = d)owg Because
g € D1 and 1/19 € D?), we obtain 59 € D@ according to
Lemma VI1.4. Notice that for any fixed r and 0, the Q—critic 43)
is equivalent to the @Q-critic of an artificial Markov decision
process with reward function gj, , (x,u) = I'(r)r €y(x, u), i =
1,...,n. Asaresult, the Poisson equations of Assumption A.(6)
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should be satisfied with appropriately defined average steady-
state quantities h(6@,r) and G(0). More specifically, similar to
[4, Sec. 5.2], we have

Ri(ear) = <l7 gg,r>9a
2(0) = (1 - 1) (L dg)g

h7 0 I‘ Z)‘k Peger - (0,1’)l,¢9>9
h(8,r) = (M&'(0,r),..., MR"(0,r),

(
(0 (8,1) + 7 (6,1)2(0). ...,
(W] (6, r) + K" (0,1)2(8)),
] I 0
GO) = | diag(z(0),...,2(6)/M T

where P} denotes the application of the operator Py k times.
We can interpret &' (6, r) as the steady-state expectation of the
“observed reward” function g'g_’r.

Let now ﬁi (y) =T(0)réy(x,u)z,i=1,...,
seen that if hZ o.r are bounded and Lipschitz continuous in ex-
pectation for alli =1,...,n, then hg , should also be_ bounded
and Lipschitz continuous in expectation. Recall that £, € D).
Fori=1,...,nandeachd > 0,

yi) ]
< Ol sup B [ e, ) | 2|

< (D(r)[e])” K

n. It can be

supE [[[ B, (
k

s%pE [L (i, uie )|z ]|*] 4

for some function L that satisfies Assumption C and some posi-
tive constant K. According to (35), I'(r)||r|| is bounded. Using
Assumption C and Lemma VL5, it follows that hZ o, satisfies
Assumption A.(8). Using Lemma VL5 it also follows that Gg
satisfies the same assumption.

It is easy to verify that the function f(r) = I'(r)r is Lipschitz
continuous and suppose its Lipschitz constant is Cr. We will
next prove that flie.r (y) is Lipschitz continuous in expectation.

Forall 0,0 c R", r,t € R andi = 1,...,n, we have
Ihg,. (v) — By . ()
< T (r)r & (x,u)z — T (F)F & (x, u)z|
< ||z (x) [l (€6(x,u) — €4 (x, ) |
+ 2]l (D(x)r = T(®)F) €5 (x, )|
< 2T (x)[|r 1€ (x, u) — &g (x, u)|

+ ||zl [1€5 (x, w)||Cr||r — . (47)

Recall that £, € D). Let K and L be the bounding constant
and the bounding function for &y; then

Ihg.. () — hy ()| < C(y) (116 — ] + [r —x])) ,

where C(y) = (D(x)|r| + Cr)KL(x,u)||z]| and y = (x,
u, z). Using the fact that I'(r)||r|| is bounded and Lemma VL5,
it follows that E[C(y)?] < oo for each d > 0. As aresult, hg ,
satisfies Assumption A.(10). Moreover, replicating an argument
from [4, Sec. 5.2] it can also be shown that G satisfies the same
assumption. Furthermore, defining

he.. (y ZEex [hg..(yx) —h(0,r)|yo =y,
k=0
Goly) = ZEG,X[Ge(yk‘) — G(0)lyo =],

k=0

we can use similar arguments as above to establish that these
functions satisfy Assumptlon A.(8) and (10).
Lemma VL7: Let @ = (0, r). Let also D)

part of D(?) for functions parameterized by 6. Then Pg T »

be the counter-

belongs to D) for all nonnegative integers k.

Proof: A simple observation is that D(?) C D) and that
Lemma V1.4 still holds for D), Namely, a product function
fa295 € DX if f, € D and g, €.

Pl gy, can be written as Py gy . = I'(r)r Pj&,. We first

observe that Pgﬁfg € D) according to [32, Corollary 2.4]. To
verify (41), we have (in functional relationships)

1Pg 9. Il < T(x)Ix[|[| P5 &gl < T(x)|[x[ KL
To verify (42), for 8,0 € R” and r,T € RY, we have
1P5 9. — Fp 9ol
L(r)|[x[l| Py &s — Pa&pll + [1P5 €llCr[Ir — 7|
L(r)|r| KL)6 — 6] + KLCr|r — £
(C(@)llr]| + Cr) KL ([0 — 0] + [[r —z[]) ,

IN A

IN

where K and L are the bounding constant and function of Pg 3 é,
respectively. ]
Using the fact that g ., ¢g € D) k(,r) and z(0) are

bounded and Lipschitz continuous w1th respect to 6 due to
[32, Corollary 5.3]. It can be easily verified that (ng}'“ —

7(0,1)1)¢pg € D? using Lemma VI.7 and Lemma VIA4.
Again, using [32, Corollary 5.3], we can obtain that h(@,r)
is bounded and Lipschitz continuous with respect to 6. As a
result, h(@, r) satisfies Assumption A.(7) and (9). Similarly, it
can also be shown that G(6) satisfies the same assumptions.
Finally, it can also be verified that flg,r(y) and Gg(y) satisfy
the same assumptions using similar arguments.

The final step in verifying all parts of Assumption A is part
(11). That follows from [4, Lemma 5.3]. Having established all
parts of Assumption A, the convergence of the Q-critic follows.

C. Actor Convergence

The actor update defined in (34) is similar to the actor update
using the unscaled gradient. The difference is that the gradient
estimate is multiplied by a positive definite matrix. This sec-
tion will present the convergence results for this type of actors.
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Define

SB(X’ U) = nge (Xv u)¢/0 (Xv u)a

where Hy is a positive definite matrix for all 8. Let S(8) =
(1,Sg)g and let ¥(0) be the limit of the critic parameter r if the
policy parameter is held fixed to 6. Similar to [12], the actor
update can be written as

011 = 01 + B Se(xp, up )ri I'(xy)
= 01 + 3:S(05)T(0,)I(£(6))
+ Br. (Se, (xr,ux) — S(6))) v T (r1)
+ BeS(0r) (i (ry,) — T(0)T(F(64))) -
Define

—S(61)) ril(ry),
e = 8(8x) (xxT(xi) — £(6,)T(x(81)))
Then, the actor update becomes:
i1 = 0) + B (F(f(@k))f(ek) +elV 4+ e,<f>) .
£(6),) is the expected actor update, while e,(cl) and e,(f) are two

error terms due to the fact that the update is performed on a
sample path of the MDP. Using Taylor’s series expansion,

a(0r+1) > (1) + BT (x(01)Va(0y) £(0))
JF/Bkva(ek)ek + BiVa (6;) e,C }

Lemma VI.8: (Convergence of the noise terms). It holds:

* > ﬂka(Ok )Iek1 converges w.p.1.

o limy egC =0 w.p.1.

Proof: Let  &\") = (&g, (xp,uz) — €(0r)) v T(ry)
A(Z = 5(9k) (re(ry) — T(6;)I(£(61))) , where /EO(X7 u) =
we(x u)p(x,u) and &(6) = (1,&g)g = (g, Pp)e. Then,

éi,l) and e(2 are the two error terms for the actor up-
date using the unscaled gradient [4]. It easily follows
that egcl) =Hyp, e A;gl) and efc2> =H,, egf). Furthermore,
Se, (xi,ur) = H;:Eek (X, ug ). The lemma can be proved by
combining these facts with [4, Lemma 6.2]. [ |

Lemma VI.8 shows that e,(gl) can be averaged out and egf)
goes to zero. As a result, the two error terms are negligible and
the update is determined by the expected direction f(6) in the
long run.

Lemma VI.9: We have £(0) = g(6) + (1, 0), where g(0)
is a function such that Va(8) g(0) > 0, and supy [e(%, 8)| <
C(1 — 1) for some constant C' > 0 independent of A.

Proof According to  (5), Va(08) = (vg,Qe)g =
(g, PoT(0))e = £(0)F(H). For A = 1, we have

and

Va(0) S(0)E(0)

= 1(0) £(6) S(0)r(6).

Notice that £ (0 ) S (0) = 0. Specifically,

= (1p. @00 (Ho. oy )
Ho£(0) €(0).

where Hg = 0 and £(8) £€(0) > 0 by construction. As a result,
£(68)'S(0) = 0, which implies that Va(0) () > 0.

The proof for A < 1 follows the proof in [4]. Let us write
r*(0) for the steady-state expectation of r;. Following the
proof of [4], we have ||t*(8) —r(0)| < Cy(1 — 1) for some
positive constant Cy. Let g(@) = S(0)r(0), where ¥ (0) is
the steady-state expectation of r; when A = 1. Then we can
still obtain Va(0)'g(8) > 0. In addition, ||f(0) —g(0)| =
1S(0)(x*(8) — t(9))|| < C(1 — 1) for some C. |

Lemma V.9 shows that the expected direction f(0) is always
a gradient ascent direction for A sufficiently close to 1. We arrive
at the following convergence result whose proof is similar to [4,
Thm. 6.3].

Theorem VI.10 Actor Convergence: For any € > 0, there ex-
ists some A sufficiently close to 1 such that the second-
order Actor-Critic algorithm satisfies limy, . inf;, |Va(0;)| <
€ w.p.1. That is, 8}, visits an arbitrary neighborhood of a sta-
tionary point infinitely often.

VIl. CASE STUDY
A. Garnet Problem

This section reports empirical results from our method applied
to GARNET problems introduced in [23]. GARNET problems
do not correspond to any particular application; they are meant
to be generic, yet, representative of MDPs one encounters in
practical applications [23]. As we mentioned earlier, GARNET
stands for “Generic Average Reward Non-stationary Environ-
ment Testbed.”

A GARNET problem is characterized by 5 parameters and
can be written as GARNET(n, m, b, o, 7). The parameters n and
m are the number of states and actions, respectively. For each
state-action pair, there are b possible next states, and each next
state is chosen randomly without replacement. The transition
probabilities to these b states are generated as follows: we divide
aunit-length interval into b segments by choosing b — 1 breaking
points according to a uniform random distribution. The lengths
of these segments represent the transition probabilities and they
are randomly assigned to the b states we have already selected.

The expected reward for each transition is a normally dis-
tributed random variable with zero mean and unit variance. The
actual reward is a normally distributed random variable whose
mean is the expected reward and whose variance is 1.

The parameter 7,0 < 7 < 1/n, determines the degree of non-
stationarity in the problem. If 7 = 0, the GARNET problem is
stationary. Otherwise, if 7 > 0, one of the states will be se-
lected with probability n7 at each time step and randomly re-
constructed as described above.

To apply the actor-critic algorithm, the key step is to de-
sign an RSP pg(u|x). In this case study, we define the
RSP to be the Boltzmann distribution that is based on some
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state-action features. Good state-action features should be inter-
pretable and could help reduce the number of parameters in the
RSP.

We first define the state feature fs(x) to be a binary vec-
tor of length d, i.e., fs(x) € {0,1}%, for each state x. There
is a parameter [ specifying the number of components in the
state feature that are equal to 1. State features are randomly
generated and we make sure no two states have the same state
feature.

In [23], the state-action feature is constructed by padding ze-
ros to state features so that the features for different actions are
orthogonal. As a result, the dimensionality of the state-action
feature constructed in this manner is equal to d|U|. This ap-
proach significantly increases the feature dimensionality, espe-
cially when the action space is very large. In this paper, we use
the state-action feature described below. For each state x, and
action u, the state-action feature is:

fsa(xo,u) = E[fs(x1)|u] — fs(x0),

where E[fs(x1)[u] = >, p(x1[x,u)fs(x1) is the expected
feature at the next state after applying action wu.

With the state-action feature as in (48), the probability of
taking action u in state x is set to

(48)

efSA (x,u)'0/T

(x,u)0/T’ (49)

[1,9(U|X) = ZugU efsa
which is a typical Boltzmann distribution with 7" being the
temperature of the distribution. With the state-action feature
described above, we can interpret —fg4(x,u)'0 as the “en-
ergy” and the distribution prefers actions that lead to lower
energy.

A common consideration in RSP design is the so-called
exploitation-exploration tradeoff [2]. An RSP exhibits higher
exploitation if it is more greedy, i.e., it is more likely to only
pick the most desirable action. However, sometimes the explo-
ration of undesirable actions is necessary because they may be
desirable in the long run. High exploitation and low exploration
may result in a sub-optimal solution. On the contrary, low ex-
ploitation and high exploration may reduce the convergence rate
of the actor-critic algorithm. Our RSP defined in (49) is flexible
because tuning 7" in (49) can effectively adjust the degree of ex-
ploration. High temperature 7" implies more exploration while
low temperature 7" implies more exploitation.

In this empirical study, we compare our algorithm with the
LSTD-AC algorithm in [14], and the four algorithms in [23],
which are henceforth referred to as BSGL1 to BSGL4, in a
GARNET problem GARNET(50, 4, 5,0.1,0). BSGL1 is based
on a “vanilla” gradient ascent and BSGL2-BSGL4 are based on
natural gradients. Henceforth, for state features we let d = 8 and
I = 3. The state-features are randomly assigned and we make
sure no two states have the same state-feature. For all algorithms,

the critic step-size is o, = a“i']z‘;’/a and the actor stepsize 5. =
Bo-Be X

At k,where a,. = . = 1000. For the LSTD actor-critic and our
method o = 0.1 and 5y = 0.1. For BSGL1 and BSGL2, oy =
0.1 and 5y = 0.01. For BSGL3 and BSGL4, we choose oy =
0.01 and 3y = 0.001. For all algorithms, the initial parameters

0.35
0.30 o et
h\/Nv‘//AHV\A\VV,\\,—w—\~fV A \
”":'W\/V\/\M”\/\/‘WM
B
s Mo
o Wﬂ%}%ﬁ#
o +
>
< +— OurAlg |
- - LSTD-AC
~— BSGL-1
+ —+ BSGL-2
— BSGL-3
BSGL-4
7005 ! ! ! 1
0 200 400 600 800 1000
iter(x1000)
Fig. 2. Comparison of our algorithm with LSTD and natural actor-critic
algorithms.

6, are zero and the temperature in (49) is set to 7" = 1. For our
algorithm, we choose xmin = 100 (cf. (33)).

We run each algorithm 50 times independently and Fig. 2
displays the mean of the average reward for the first 1,000,000
iterations. Table I summarizes the convergence time and con-
verged average reward for each algorithm. For each problem,
the first two columns of Table I show the mean and standard de-
viation of the reward achieved. The third and fourth columns list
the time (mean and standard deviation) it takes to convergence.
The last column shows the average CPU time per iteration (TPI).
The results are based on 50 independent runs for the GARNET
problem and 100 independent runs for the robot control problem.
Note that BSGL2 becomes numerically unstable after 500,000
iterations, so the reward of BSGL2 in Table I is the maximal
reward before numerical instability occurs and the time is the
time it takes to reach the maximal reward.

Compared to the LSTD-AC method, our method adds a
second-order critic update and takes advantage of the Hessian
estimate in the actor update. For this problem, the average CPU
time of one LSTD-AC iteration is 1288 ps. In comparison, the
average CPU time for one iteration of our algorithm is 1818 pus,
which means that computing the second-order critic and the in-
verse of the Hessian adds about 41% to the computational cost.
Despite the larger CPU time per iteration, our algorithm still
converges faster than LSTD-AC because fewer iterations are
needed. The CPU time per iteration of both our algorithm and
LSTD-AC is larger than BSGL1-4. This is likely because both
our algorithm and LSTD-AC use a state-action feature vector,
whose dimensionality is larger than the one used in BSGL1-4
for value function approximations.

Among the four algorithms in [23], BSGL3 converges faster,
which is consistent with the empirical study in [23]. Compared to
BSGL3, although our algorithm uses longer time to converge, it
converges to higher value (0.33) than BSGL3 (0.24). On average
our algorithm takes only 43 seconds to reach an average reward
of 0.24 vs. 122 seconds needed by BSGL3 to reach the same
value.
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TABLE |
COMPARISON OF ALL ALGORITHMS IN A GARNET AND A RoBOT CONTROL PROBLEM.
GARNET Robot Control
Alg. Name Reward Conv. Time (s) TPI(x s) Reward Conv. Time (s) TPI(i s)
Mean Std Mean Std Mean Std Mean Std
Our Alg. 033 0070 727 109 1818 00916  0.00109 118 3.0 3281
LSTD-AC 029  0.091 773 99 1288 00851  0.0235 187 23 2837
BSGL-1 0.1 008 540 75 601 00819 0000731 217 29 2173
BSGL-2 0.16 0078 342 44 684 00909  0.00136 231 9.8 2313
BSGL-3 024 0093 122 1.6 678 00927 0000936 142 64 2372
BSGL-4 028 0082 68 116 686 00916  0.000860 209 5.0 2319
For BSGL2, the Table Displays the Maximal Average Reward Before Numerical Instability Happens and the Time to
Reach the Reward
50 r . . r actions “North” and “East” are enabled. For each state x,
let U, (x) denote the enabled actions in this state.
¢ Transitional model. A control action does not necessarily
7 lead the robot to the intended direction because the out-
40 // y i come is subject to noise in actuation and possible surface
y roughness in the environment. In this problem, a robot
can only move to the adjacent state in one step. For each
30 A enabled control, the robot moves to the intended direction
I 1 with probability 0.7 and moves to other allowed directions
v with equal probabilities.
/ v X ope L
/ /////A e Initial state. The robot starts from state x(, which is
20l /4 | labeled as ‘x’ in Fig. 3.
= e Reward function. There are some unsafe regions Xy,
6 which should be avoided, in the mission environment.
v There are also some goal states X; that should be visited
10} W i as often as possible. The unsafe and goal states are dis-
/ A played as black stripes and green solid colors in Fig. 3,
V 4 respectively. The objective is to find an optimal policy that
A maximizes the expected average reward with an one-step
0! . v reward function defined b
0 10 20 30 40 50 Y
Fig. 3. View of the mission environment, where the initial region is 1, ifz € Xe,
marked by * *x’ ’, the goal regions are marked by green colors, and the g(x,u) =< -1, ifr € Xy,
unsafe regions are displayed in black stripes. .
0, otherwise.

B. Robot Control Problem

In this section we compare the performance of our algorithm
with other algorithms in a robotics application. Fig. 3 shows the
mission environment, which is a 50 x 50 grid. We model the
motion of the robot in the environment as the following MDP
M:

e State space. Each state x € X corresponds to a region
in the mission environment and can be represented by a
coordinate (i, 7), where ¢ is the row number and j is the
column number.

e Action space. The action space U = {u, uy, us, uy } cor-
responds to four control primitives (actions): “North,”
“East,” “South,” and “West,” which represent the direc-
tions in which the robot intends to move. Depending on
the location of a region, some of these actions may not
be enabled, for example, in the lower-left corner, only

This problem is the foundation of many complex robot motion
control problems in which MDPs are defined in more complex
ways, i.e., using temporal logic [15]-[17].

In this problem, we consider two state features that represent
the safety and affinity of the state, respectively. For each pair
of states x;,x; € X, we define d(x;,x;) to be the minimum
number of transitions from x; to x;. We say x; € .4 (x;)—a
neighborhood of x;—if and only if d(x;,x;) < r,, for some
fixed integer 7, given a priori. For each state x € X, the safety
score is defined as the ratio of the safe neighboring states over
all neighboring states of x. Namely,

Yyenx) Ls(y)
e
where I (y) is an indicator function such that I, (y) = 1 if and

only if y € X\ Xy and I (y) = 0 otherwise. A higher safety
score for the current state of the robot means it is less likely for

safety(x) = (50)
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iter(x1000)
Fig. 4. Comparison of our algorithm with LSTD and natural actor-critic
algorithms.

the robot to reach an unsafe region in the future. We define the
affinity score of a state x € X as

affinity(x) = — min d(x,y)

veXe

which is the negative of the minimum number of transitions
from x to any goal state. The state feature is defined to be

fs(x) =

and the state-action feature fs 4 (x, u) is calculated using (48). In
this application, we use the following Boltzmann distribution.

[safety(x), affinity(x)],

efsa (x,u)'0/T
ZUEU (x) efsn(x,u) 073

where 7' is the temperature. Note that the only difference of (51)
with (49) is that (51) restricts to enabled actions.

Again, we compare our algorithm with the LSTD-AC
algorithm in [14] and the four algorithms in [23]. We run each
algorithm 100 times independently and Fig. 4 shows the compar-
ison of the average reward for the first 100,000 iterations. For all
algorithms, the initial € is (0, 5) and the temperature 7" = 5. The
step-sizes satisfy o, = ”Hm and 5, = Z“ B. For LSTD-AC
and our algorithm, we set ayg = 0.1, a,. = 1000 Bo = 0.01 and
B. = 1000. For BSGL1-BSGLA4, we set oy = 0.1, . = 1000,
Bo = 0.001 and B, = 10000. We use X.min = 30 in (32).

Table I summarizes the convergence time and the converged
reward for all algorithms. Among the three natural gradient-
based algorithms, BSGL3 performs the best, but on average it is
still slower than our method in this problem. The convergence
rate of BSGL1 is much worse than the rest of the algorithms.
For this problem, we did not observe numerical instability for
BSGL2.

For the robot control problem, the average CPU time per
iteration is 3281 ps for our algorithm vs. 2837 ps for LSTD-
AC, that is, about 15.7% higher. The computational overhead
of the second-order critic in this problem is much lower than in

po(ulx) = (D)

the GARNET problem, which is due to the fact that the robot
control problem has less parameters.

The CPU time per iteration of both LSTD-AC and our algo-
rithm is larger than that of BSGL1-BSGL4, but the difference
is much smaller compared with the GARNET problem. Since
significant less iterations are needed for our algorithm, it con-
verges faster than all other algorithms. Specifically, the second-
best algorithm, BSGL3, takes on average 20.3% more time to
converge.

VIII.

In this paper we propose a general estimate for the Hessian
matrix of the long-run reward in actor-critic algorithms. Based
on this estimate, we present a novel second-order actor-critic
algorithm which uses second-order critic and actor. The actor,
in particular, uses a direct estimate of the Hessian matrix to
improve the rate of convergence for ill-conditioned problems.
Building on the LSTD-AC algorithm in [16], [14], our algorithm
extends the critic to approximate the Hessian and revises the
actor to update the policy parameters using Newton’s method.
We compare our algorithm with the LSTD-AC algorithm and
the four algorithms in [23], three of which are based on natural
gradients, in two applications. The results show that our method
can achieve a better rate of convergence for many problems.

As a variant of Newton’s method, our method has similar
limitations. First, the cost of maintaining a Hessian estimate is
quadratic to the number of parameters. As a result, our algo-
rithm is only suitable for problems with relatively small num-
ber of parameters. Second, our algorithm requires the second
derivative of the policy function, which implies that the method
can not be applied if the policy function is not twice differ-
entiable or its second-order derivatives are hard to obtain. Our
algorithm is suitable for the cases where the reward is more
sensitive to some parameters vs. others, leading to potentially
ill-conditioned problems that are best handled by Newton’s
method.

One direction for future work is to use part of (9) rather than
all four terms, so as to achieve a better tradeoff between con-
vergence rate and computational cost per iteration. In addition,
the algorithm described in this paper is suitable for the average
reward problem. Since Theorem IV.2 holds for all three types
of rewards, similar algorithms can be derived for the discounted
and the total reward cases.

CONCLUSIONS AND FUTURE WORK
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APPENDIX A
PROOF OF LEMMA V1.1

Lemma A.1: Suppose {v}, {Cr}, {Br} are three determin-
istic positive sequences that satisfy (36) for some d;,dy > 0.
Then,

Z(max(’Yk,ﬁk)/Ck)d < oo forsomed > 0.
k
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Proof: Note that limy (v /¢;) = 0 and limy (8 /¢x) = 0.
Letting d > max(dy,ds), it follows >, (v¢/Cx)? < 0o and

Zk- (5k/<k)d < oo. Further,
> (max(ye, Br)/G)" =Y (max(yi /G, Br /Gr))"

k k

> max((y/G)?, (Bi/G)")
k

<Y /) + D (Be /)"

k k
< Q.

The second equality is due to the function f(x) = z? being
monotonically increasing in the range [0,00) when d > 0.
The first inequality follows because both {(7:/¢.)?} and
{(Br /) } are positive sequences. [ |

A. Proof of Lemma VI.1:

Proof: Define 0, = (04, ry) to be the collection of all pa-
rameters in (39). We can write (39) as

si+1 = si + G by, (yi) — Gy, (vr)sk) + GBSy
We have

(52)

1041 — 0kl < 110k41 — Okl + Irirs — x|
< BeFi + e Fy,
max (B, v ) (Fr + F,).

The last inequality is implied since 5 > 0, v, > 0, F} and
Iy are nonnegative processes. Combined with Lemma A.1, we
can see Assumptions 3.1.(1-3) in [12] are satisfied. In addition,
Assumptions 3.1.(4-10) in [12] are satisfied due to Assump-
tions A.(3—11). As a result, Thm. 3.2 in [12] holds and implies

lim | G(8y)sr. — h(Bx)|| =0, (53)

IN

w.p.1.

The left hand side of (53) is equivalent to the left hand side of
the lemma. ]

APPENDIX B
PROOF OF THEOREM V1.6

We first present the following lemmas. We define the norm
|l - || of a matrix to be the norm of the column vector containing
all of its elements.

Lemma B.1: Under iteration (27), we have

||Ak+1 *Ak,H < ’YkFl::Lla
[bri1 —bill < wEY,

for some processes {F{'} and {F}} with bounded moments,
where v, is the stepsize in (27).
Proof: According to (27), we have

A — Ay

=Yk (Zk(dgk (Xi,ur) — @g, ., (Ker1, rr1)) — Ak) :

Similar to Lemma VI.5 and because z;. has bounded moments
and ¢y € D) it can be verified that A ;. has bounded mo-
ments. This establishes the first statement of the Lemma. We
can prove the second statement of the Lemma for {by } in the
same way given that the one-step reward function g € D), first
by establishing that o, has bounded moments. |

Lemma B.2: Suppose f(+) is a locally Lipschitz continuous
function on a domain D. Let {v;} be a sequence of ran-
dom variables with bounded moments defined on D such that
lvri1 — vkl < 5 Fj for some {F}, } with bounded moments
w.p.1. Then [|f(vg41) — £(vg)] < 'ku,{ for some {ka} with
bounded moments w.p.1.

Proof: Since ||vj11 —vgll < v, F, it follows ||vgy1 —
v| < oo w.p.1. Since {v;, } has bounded moments, v;; must
be in a compact set w.p.1 for Vk. Then, by Lipschitz continu-
ity, [f(v41) — f(vp)|| < Cllvgsr — vi|| < v CFj, for some
constant C'. The lemma can be proved by letting F,f =CF;. 1

Lemma B.3: Let v = {A,b} be a vector consisting of all
elements in an m x m matrix A and a vector b € R”. The
function f(v) = A~'b is locally Lipschitz continuous with re-
spect to A and b on the domain D = {v : det(A) > €}, where
€ is a positive constant.

Proof: Let A® denote the adjoint matrix of A. The function
f*(v) = A%Db is locally Lipschitz continuous as it is a polyno-
mial function, so ||f*(v1) — £ (v2)|| < Cjv; — v2]| for some
constant C' and v; and v, that belong to a compact set. Since
A~ = A%/det(A) and for v; = {A1,b1}, v2 = {As, by},
we have

[£(v1) — f(va)[| = |[A7 by — Ay by

= ||A‘11b1/det(A1) — Agbg/det(Ag)”

1
< EHA{fbl — ASby||

= 2 (o) ~ £ (w2)]

IN

e |

So f(v) = A~'b must be locally Lipschitz continuous on the
domain D = {v : det(A) > €}. |

A. Proof of Theorem VI.6

Proof: Recall that V(A) is the column vector stacking all
columns in a matrix A. Let vy, = (V(Ay), by) where Ay and
b;. are the iterates in (27). It follows
[Akt1 = Agll + [Ibrs1 — by
W (F + Fp).

vkt — vkl =

IN

The last equality is due to Lemma B.1 and F,f + F,f has
bounded moments. Define the function f(v;) = A, by, which
implies rj, = f(x;) = A, 'bj, when det(A}) > e by (28). The
lemma can be easily proved by combining Lemma B.3 and
Lemma B.2. |
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