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An Actor-Critic Algorithm With Second-Order
Actor and Critic
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Abstract—Actor-critic algorithms solve dynamic decision4
making problems by optimizing a performance metric of5
interest over a user-specified parametric class of policies.6
They employ a combination of an actor, making policy7
improvement steps, and a critic, computing policy improve-8
ment directions. Many existing algorithms use a steepest9
ascent method to improve the policy, which is known to suf-10
fer from slow convergence for ill-conditioned problems. In11
this paper, we first develop an estimate of the (Hessian) ma-12
trix containing the second derivatives of the performance13
metric with respect to policy parameters. Using this esti-14
mate, we introduce a new second-order policy improvement15
method and couple it with a critic using a second-order16
learning method. We establish almost sure convergence of17
the new method to a neighborhood of a policy parameter18
stationary point. We compare the new algorithm with some19
existing algorithms in two application and demonstrate20
that it leads to significantly faster convergence.21

Index Terms—Actor-critic algorithms, Markov decision22
processes, Newton’s method, robotics.23

I. INTRODUCTION24

MARKOV Decision Processes (MDPs) provide a general25

framework for sequential decision making problems. Al-26

though MDPs can be solved using dynamic programming, the27

well-known “curse of dimensionality” becomes an impediment28

for larger instances [1]. In addition, dynamic programming in29

a standard implementation requires explicit transition probabil-30

ities among states under each control, which are not available31

for many applications. To address these limitations, a number32

of approximate dynamic programming techniques have been33

developed, including reinforcement learning methods [2], a va-34

riety of techniques involving value function and policy approx-35

imations (neuro-dynamic programming [3]) and actor-critic36

algorithms [4].37
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This paper focuses on the latter actor-critic algorithms. They 38

optimize a parametric user-designed Randomized Stationary 39

Policy (RSP) using policy gradient estimation. RSPs are poli- 40

cies parameterized by a parsimonious set of parameters. To 41

optimize the RSPs with respect to these parameters, actor-critic 42

algorithms estimate policy gradients using learning methods 43

that are much more efficient than computing a cost-to-go func- 44

tion over the entire state-action space. Many different vari- 45

ants of actor-critic algorithms have been proposed and shown 46

to be effective for many applications such as robotics [5], 47

biology [6], navigation [7], and optimal bidding for electricity 48

generation [8]. 49

In an attractive type of an actor-critic algorithm introduced in 50

[4], a critic is used to estimate the policy gradient from observa- 51

tions on a single sample path and an actor is using this gradient to 52

update the policy at a slower time-scale [4]. The estimate of 53

the critic tracks the slowly-varying policy asymptotically, using 54

first-order variants of the Temporal Difference (TD) learning 55

algorithms (TD(1) and TD(λ)). However, it has been shown that 56

second-order learning methods—Least Squares TD (LSTD)— 57

are superior in terms of rate of convergence (see [9]–[14]). 58

LSTD was first proposed for discounted cost problems in [11] 59

and was shown to have the optimal rate of convergence in [12]. 60

In [14], LSTD is used in the critic of an actor-critic algorithm, 61

resulting in the LSTD Actor-Critic algorithm (LSTD-AC). 62

Later, this algorithm was applied to applications of robot 63

motion control with temporal specifications [15]–[17]. Despite 64

faster convergence than TD-based methods, LSTD-AC exhibits 65

slow convergence for ill-conditioned problems in which the 66

performance metric is more sensitive to some parameters in the 67

RSPs than others. The reason is that it uses a first order actor 68

with an “unscaled” gradient, commonly known as steepest 69

ascent, to update the policy. This often leads to a “zig-zagging” 70

behavior in order to converge to a stationary point. 71

Several algorithms have been introduced which use a second- 72

order method in the actor. The “natural” gradient method was 73

originally proposed for stochastic learning [18], [19]. [20] pro- 74

posed a different estimate of the natural gradient but its accuracy 75

can be influenced by the choice of basis functions; an episodic 76

algorithm was then proposed to guarantee the unbiasedness of 77

the estimate. These methods use the inverse of the Fisher infor- 78

mation matrix to scale the gradient. [21] suggested several incre- 79

mental methods using the natural policy gradient. [22] presented 80

an online natural actor-critic algorithm using a natural gradient 81

and applied it to a road traffic optimization problem. Based on 82

[20], [23] proposes three fully incremental natural actor-critic 83
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algorithms. It also describes a method that is based on a84

“vanilla” gradient and provides extensive empirical comparison85

of all algorithms in test problems (so called Generic Average86

Reward Non-stationary Environment Testbed—GARNET87

problems [23]).88

Although natural gradients are very effective in stochastic89

learning, there are alternative ways to scale gradients. The90

Hessian matrix of the performance metric with respect to the pa-91

rameters is commonly used to improve the rate of convergence.92

[24] proposes an estimate of the Hessian matrix for a discounted93

reward problem using a sample path of an MDP. Although the94

relationship between the Fisher information matrix and the Hes-95

sian matrix has been briefly discussed in [19] and [25], it is still96

not fully clear how they are related in the actor-critic framework97

and why natural actor-critic algorithms work well in practice.98

In this work, we develop a more general estimate of the99

Hessian matrix for actor-critic algorithms. In Section V-C, we100

demonstrate that our Hessian estimate degenerates to the Fisher101

information matrix used in natural actor-critic algorithms if we102

assume no knowledge of the state-action value function and ig-103

nore second derivatives with respect to the parameter vector. In104

this light, natural actor-critic algorithms can be seen as equiv-105

alent to quasi-Newton methods that assume no knowledge of106

the state-action value function when approximating the Hessian107

matrix. In fact, [12] proposes a quasi-Newton actor-critic108

algorithm that is very similar to the methods in [20].109

This paper proposes a method that uses LSTD-based crit-110

ics to provide estimates of both the gradient and the Hessian111

and utilizes the Hessian estimate in the actor to update policy112

parameters.113

We establish almost sure convergence in the neighborhood114

of a stationary point (with respect to policy parameters) of the115

performance metric. We remark that a subset of the results ap-116

peared in a preliminary conference paper in [1]. The present117

paper contains all proofs concerning the Hessian estimate, the118

convergence analysis which was absent from [1], and a much119

more extensive numerical evaluation of our method both in120

GARNET problems and in an application from robotics.121

The remainder of the paper is organized as follows: Section II122

provides background on MDPs and establishes some of our no-123

tation. Section III presents the estimation of the policy gradient.124

Section IV develops the estimate of the policy Hessian, which125

is the foundation of the new algorithm. Section V describes126

our method and Section VI proves its convergence. Section VII127

presents two case studies.128

Notation: Bold letters are used to denote vectors and matrices;129

typically vectors are lower case and matrices upper case. Vectors130

are column vectors, unless explicitly stated otherwise. Prime de-131

notes transpose. For the column vector x ∈ Rn we write x =132

(x1 , . . . , xn ) for economy of space, while ‖x‖ denotes the133

Euclidean norm. The expressions � 0 and � 0 denote positive-134

definiteness and positive-semi-definiteness, respectively. Vec-135

tors or matrices with all zeroes are written as 0 and the identity136

matrix as I. For any set S , |S | denotes its cardinality. θ denotes137

the parameters in parameterized policies. If not explicitly speci-138

fied, ∇ and ∇2 denote the gradient and Hessian w.r.t. θ. To sim-139

plify the notation, a lot of equations in this paper are represented140

using functional notation and the domain of these functions is 141

assumed to be X × U , where X and U are the state and the 142

action space, respectively, of the MDP. Vector-valued functions 143

are denoted using bold letters while scalar-valued functions are 144

denoted using normal letters. 0 and 1 are functions that assign 145

the value 0 and 1 to all state-action pairs, respectively. 146

II. MARKOV DECISION PROCESSES 147

Consider a discrete-time Markov Decision Process (MDP) 148

with a finite state space X and an action space U . Let xk ∈ X 149

and uk ∈ U be the state of the system and the action taken 150

at time k, respectively. Let g(xk , uk ) be the one-step reward 151

of applying action uk when the system is at state xk . We will 152

use x0 to denote the initial state and p(xk+1 |xk , uk ) for the 153

state transition probabilities, which are typically not explicitly 154

known. We assume that {xk} and {xk , uk} are ergodic Markov 155

chains [12]. 156

This paper considers policies that belong to a parameterized 157

family of RSPs {μθ : θ ∈ Rn}. That is, given a state x ∈ X 158

and an n-dimensional parameter vector θ, the policy applies 159

action u ∈ U with probability μθ(u|x). Given a fixed policy 160

μθ(u|x), the history of g(xk , uk ) can be represented by a ran- 161

dom process. Let Eθ{·} be the expectation with respect to this 162

random process; the long-term average reward for a policy μθ 163

is ᾱ(θ) = Eθ{limT→∞ 1
T

∑T −1
k=0 [g(xk , uk )]}. 164

In average reward MDP optimization problems, the perfor- 165

mance metric is the long-term average reward ᾱ(θ) and the 166

objective is to optimize ᾱ(θ). Similar problems can be defined 167

by using discounted reward or total reward as performance met- 168

rics [12]. Note that the discounted reward and the total reward 169

can be treated as the average reward of an artificial MDP (See 170

Chapter 2 of [12]). Without loss of generality, this paper focuses 171

on the average reward case. Corresponding results for the other 172

cases can be obtained with modifications similar to Sec. 2.4 and 173

2.5 of [12]. 174

III. ESTIMATION OF POLICY GRADIENT 175

The state-action value function Qθ : X × U → R (some- 176

times referred to as the Q-value function) of a policy μθ is 177

defined as the expected future reward given the current state 178

x and the action u. Qθ is the unique solution of the Poisson 179

equation with parameter θ [26], [12] (written as a functional 180

relationship) 181

Qθ = g − ᾱ(θ)1 + PθQθ, (1)

where Pθ is the operator of taking expectation after one transi- 182

tion. More precisely, for any real-valued or vector-valued func- 183

tion f defined on X × U , 184

(Pθf)(x, u) =
∑

y ,ν

p(y|x, u)μθ(ν|y)f(y, ν) (2)

for all (x, u) ∈ X × U . 185

Let now 186

ψθ(x, u) = ∇ lnμθ(u|x), (3)
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whereψθ(x, u) = 0 when x, u are such thatμθ(u|x) ≡ 0 for all187

θ’s. It is assumed thatψθ(x, u) is bounded and continuously dif-188

ferentiable. Sinceμθ(u|x) is the probability of actionu at state x189

for θ,ψθ(x, u) is the gradient of the log-likelihood lnμθ(u|x).190

We write ψθ = (ψ1
θ, . . . , ψ

n
θ ) where n is the dimensionality191

of θ.192

For each θ ∈ Rn , let ηθ(x, u) be the stationary probability193

of state-action pair (x, u) in the Markov chain {xk , uk}. For194

any θ ∈ Rn , we define the inner product operator 〈·, ·〉θ of two195

real-valued or vector-valued functions Q1 , Q2 on X × U by196

〈Q1 , Q2〉θ =
∑

x,u

ηθ(x, u)Q1(x, u)Q2(x, u). (4)

A key fact underlying actor-critic algorithms is that the policy197

gradient of ᾱ(θ) can be expressed as [27], [12]198

∂ᾱ(θ)
∂θi

=
〈
Qθ, ψ

i
θ

〉
θ
, i = 1, . . . , n. (5)

IV. ESTIMATION OF THE POLICY HESSIAN199

Earlier work in actor-critic methods has used critics based200

on TD(1), TD(λ), and LSTD methods to estimate the policy201

gradient ∇ᾱ(θ) [4], [28]. Since we are interested in a Newton-202

like gradient ascent update in the actor, in this section we develop203

an estimate for the policy Hessian matrix ∇2 ᾱ(θ).204

Applying the operator ∇ on the real-valued function gθ(x, u)205

parameterized by θ, we obtain a vector-valued function, abbre-206

viated as ∇gθ , which maps (x, u) to ∇gθ(x, u). For a vector-207

valued function fθ : X × U → Rm parameterized by θ, which208

can be denoted as fθ = (f 1
θ , . . . , f

m
θ ), we define ∇fθ to be an209

n×m matrix-valued function whose ith column is ∇fiθ .210

Lemma IV.1: For any vector-valued function fθ : X × U →211

Rm , we have212

∇ (Pθfθ) = Pθ

(
∇fθ +ψθf

′
θ

)
.

Proof: For all state-action pairs (x, u) ∈ X × U , we have213

∇(Pθfθ)(x, u) = ∇
(
∑

y ,ν

p(y|x, u)μθ(ν|y)fθ(y, ν)

)

=
∑

y ,ν

p(y|x, u)∇ (μθ(ν|y)fθ(y, ν)) . (6)

In the above, μθ(ν|y)fθ(y, ν) is a function defined on X × U ,214

which is abbreviated as μθfθ. Using the chain rule and the215

definition of ψθ, we obtain216

∇ (μθfθ) = μθ∇fθ + ∇μθf
′
θ

= μθ

(
∇fθ +ψθf

′
θ

)
. (7)

The lemma can be proved by substituting (7) to (6). �217

Lemma IV.1 provides a way to interchange the Pθ and ∇218

operators. Similar to the definition of ψθ, we define219

ϕθ(x, u) = ∇2 lnμθ(u|x), (8)

where ϕθ(x, u) = 0 when x, u are such that μθ(u|x) ≡ 0 for220

all θ.ϕθ is the Hessian matrix of the log-likelihood lnμθ(u|x).221

The following theorem establishes a similar result to (5) for the 222

Hessian matrix ∇2 ᾱ(θ). 223

Theorem IV.2 (Hessian Matrix of Average Reward): Let 224

ϕijθ : X × U → R be the scalar-valued (i, j)-th component of 225

ϕθ(x, u). The second-order partial derivative of ᾱ(θ) with 226

respect to θ can be represented as: 227

∂2 ᾱ(θ)
∂θi∂θj

=
〈
Qθ, ψ

i
θψ

j
θ

〉

θ
+
〈
Qθ, ϕ

ij
θ

〉

θ

+
〈
∂Qθ

∂θi
, ψjθ

〉

θ

+
〈
∂Qθ

∂θj
, ψiθ

〉

θ

(9)

for all i, j = 1, . . . , n, where 〈·, ·〉θ is the inner product operator 228

defined in (4). 229

Proof: Applying the ∇ operator on both sides of (1) and 230

using Lemma IV.1 with fθ being the scalar function Qθ, we 231

obtain 232

∇ᾱ(θ)1 + ∇Qθ = Pθ (ψθQθ + ∇Qθ) . (10)

Defining the vector-valued function fθ = ψθQθ + ∇Qθ and 233

applying again the ∇ operator on both sides of (10), we have 234

∇(∇ᾱ(θ)1 + ∇Qθ) = ∇(Pθfθ),

which due to Lemma IV.1 implies 235

∇2 ᾱ(θ)1 + ∇2Qθ = Pθ

(
∇fθ +ψθf

′
θ

)
. (11)

Take now the inner product with 1 on both sides of (11) and 236

notice that because ηθ(x, u) is the stationary probability under 237

θ, it holds 〈1,h〉θ = 〈1, Pθh〉θ for any function h defined on 238

X × U . We have 239

∇2 ᾱ(θ) +
〈
1,∇2Qθ

〉
θ

=
〈
1,∇fθ +ψθf

′
θ

〉

θ
.

Using the definition of fθ and the fact ∇fθ = ∇(ψθQθ) + 240

∇2Qθ, we obtain 241

∇2 ᾱ(θ) +
〈
1,∇2Qθ

〉
θ

=
〈
1,∇(ψθQθ) + ∇2Qθ

〉
θ

+
〈
1, Qθψθψ

′
θ +ψθ∇Q

′
θ

〉

θ
(12)

Applying the chain rule, noticing that ∇ψθ = ϕθ, and reorga- 242

nizing the terms in (12) it follows 243

∇2 ᾱ(θ) =
〈
Qθ,ψθψ

′
θ

〉

θ
+ 〈Qθ,ϕθ〉θ

+
〈
∇Qθ,ψ

′
θ

〉

θ
+
〈
ψθ,∇Q

′
θ

〉

θ
. (13)

� 244

Corresponding results for the discounted reward and the total 245

reward cases can be derived based on the relationship between 246

these three problems we discussed earlier. Intuitively, the dis- 247

counted and total rewards can be considered as average rewards 248

in some artificial MDPs. More detailed information about con- 249

structing the artificial MDPs is available at Sec. 2.4 and Sec. 2.5 250

of [12]. 251

Theorem IV.2 states that the Hessian matrix ∇2 ᾱ(θ) can be 252

decomposed into four terms, all of which take the form of inner 253

products. The first two terms are the inner products of the state- 254

action value function Qθ with ψiθψ
j
θ and ϕijθ . Because of the 255
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similarity between the first two terms and (5), we can use similar256

techniques as in the LSTD-AC to estimate them.257

For the last two terms in (13) we need an estimate of ∇Qθ .258

Note that (10) is the counterpart of the Poisson equation (1) for259

∇Qθ , where Pθ(ψθQθ) plays the role of the one-step reward.260

However, this equation can not be directly used to estimate∇Qθ261

because it is quite hard to obtain Pθ(ψθQθ). To address this262

problem, we present the following theorem.263

Theorem IV.3: Let the function Q̃θ : X × U → Rn be the264

solution of the equation265

∇ᾱ(θ)1 + Q̃θ = ψθQθ + PθQ̃θ, (14)

and ∇Qθ : X × U → Rn be the solution of (10). Then,266

〈
∇Qθ,ψ

′
θ

〉

θ
−
〈
Q̃θ,ψ

′
θ

〉

θ
= −

〈
Qθ,ψθψ

′
θ

〉

θ
. (15)

Proof: Applying the Pθ operator on both sides of (14) and267

using the fact that Pθ1 = 1, we obtain268

∇ᾱ(θ)1 + PθQ̃θ = Pθ(ψθQθ + PθQ̃θ). (16)

Comparing (10) and (16), it follows PθQ̃θ = ∇Qθ. As a result,269

〈
∇Qθ,ψ

′
θ

〉

θ
−
〈
Q̃θ,ψ

′
θ

〉

θ
=
〈
∇Qθ − Q̃θ,ψ

′
θ

〉

θ

=
〈
PθQ̃θ − Q̃θ,ψ

′
θ

〉

θ

=
〈
−ψθQθ + ∇ᾱ(θ)1,ψ

′
θ

〉

θ

= −
〈
Qθ,ψθψ

′
θ

〉

θ
+ ∇ᾱ(θ)

〈
1,ψ

′
θ

〉

θ
, (17)

where the third equality above used (14).270

Let now πθ(·) be the stationary probability of the Markov271

chain {xk} under RSP θ. Then, ηθ(x, u) = πθ(x)μθ(u|x), and272

〈
1,ψ

′
θ

〉

θ
=
∑

x,u

ηθ(x, u)ψθ(x, u)
′

=
∑

x,u

ηθ(x, u)∇μθ(u|x)
′
/(μθ(u|x))

=
∑

x

πθ(x)
∑

u

∇μθ(u|x)
′

= 0, (18)

where in the second equality we used (3) and the last equality273

follows from the fact that
∑

u μθ(u|x) = 1 for all θ. Eq. (15)274

follows by combining (17) and (18). �275

By symmetry to Eq. (15), it also holds that276

〈
ψθ,∇Q

′
θ

〉

θ
−
〈
ψθ, Q̃

′
θ

〉

θ
= −

〈
Qθ,ψθψ

′
θ

〉

θ
. (19)

Substituting (15) and (19) into (13), we obtain a new es-277

timate of the Hessian matrix ∇2 ᾱ(θ) given in the following278

Corollary.279

Corollary IV.4: With Q̃θ being a solution of (14), the Hes- 280

sian matrix ∇2 ᾱ(θ) can be expressed as: 281

∇2 ᾱ(θ) =
〈
Qθ,ϕθ −ψθψ

′
θ

〉

θ
+
〈
Q̃θ,ψ

′
θ

〉

θ

+
〈
ψθ, Q̃

′
θ

〉

θ
. (20)

A. Function Approximation 282

We can calculate Qθ and Q̃θ by solving (1) and (14). How- 283

ever, when X × U is very large, the computational cost becomes 284

prohibitive. This problem can be addressed using function ap- 285

proximation techniques. One popular type of function approx- 286

imation is to express Qθ and each component of Q̃θ with a 287

linear combination of feature functions. We choose a set of fea- 288

ture functions φθ = (ψiθ, ϕ
ij
θ , ψ

i
θψ

j
θ; i, j = 1, . . . , n), where 289

φθ(x, u) is an N -dimensional vector for ∀x, u ∈ X × U with 290

N = (2n2 + n) and n being the dimensionality of θ. Similar to 291

other actor-critic algorithms, the basis functions φθ need to be 292

uniformly linearly independent [4], [12], which can be enforced 293

by choosing a suitable structure of policies. Some additional 294

features can be added depending on the particular application. 295

This added flexibility could be useful in a number of ways as it 296

has been discussed in [4]. 297

Similar to [12], we consider the following linear approxima- 298

tion for Qθ 299

Qr
θ(x, u) = φ

′
θ(x, u)r, r ∈ RN . (21)

Let us now view the inner product operator in (4) for real- 300

valued functions in X × U as an inner product between vectors 301

in R|X||U | and denote by ‖·‖θ the induced norm. Also denote by 302

Φθ the low-dimensional subspace spanned by φθ. If we define 303

r∗ = arg min
r∈RN

||Qr
θ −Qθ||θ, (22)

then Qr∗
θ is the projection of Qθ on Φθ . Similar to (2.2) of [4], 304

〈
Qr∗

θ , ψ
i
θ

〉
θ

=
〈
Qθ, ψ

i
θ

〉
θ
,

〈
Qr∗

θ , ϕ
ij
θ − ψiθψ

j
θ

〉

θ
=
〈
Qθ, ϕ

ij
θ − ψiθψ

j
θ

〉

θ
, (23)

for all i, j = 1, . . . , n. 305

Define the linear approximation of Q̃i
θ, the ith component of 306

Q̃θ, as 307

Q̃ti
θ (x, u) = φ

′
θ(x, u)ti , ti ∈ RN . (24)

Again, for all i, j = 1, . . . , n and 308

ti∗ = arg min
t∈RN

||Q̃ti
θ − Q̃i

θ||θ, (25)

Q̃ti ∗
θ is the projection of Q̃i

θ on Φθ . Similar to (2.2) of [4], we 309

have 310
〈
Q̃ti ∗

θ , ψjθ

〉

θ
=
〈
Q̃i

θ, ψ
j
θ

〉

θ
. (26)

Equations (23) and (26) state that the projections of Qθ and 311

Q̃θ on the low-dimensional space Φθ are sufficient for estimat- 312

ing (20). This reduces the computational cost for obtaining Qθ 313

and Q̃θ since we only have to compute the relative parsimo- 314

nious vectors r∗ and ti∗, i = 1, . . . , n, while it does not alter the 315
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inner products needed to compute the gradient ∇ᾱ(θ) (cf. (5))316

and the Hessian ∇2 ᾱ(θ) (cf. (20)).317

V. A SECOND-ORDER ACTOR-CRITIC ALGORITHM318

A. Critic Step319

We use the Least Squares Temporal Difference (LSTD) (see,320

e.g., [14]) with parameter λ to estimate r∗ and ti∗, i = 1 . . . , n,321

defined in (22) and (25), respectively. Recall that xk and322

uk denote the state and the action of the system at time k,323

respectively. Let αk denote an estimate of the average re-324

ward at time k. zk ∈ RN denotes Sutton’s eligibility trace325

and Ak ∈ RN×N a sample estimate of the matrix formed by326

zk (φ
′
θk

(xk , uk ) − φ′
θk

(xk+1 , uk+1)), which can be viewed as327

a sample observation of the scaled difference of the features328

between time k and time k + 1. bk ∈ RN refers to a statisti-329

cal estimate of the single period relative reward with eligibility330

trace zk . Let also use the initial values: A0 is an identity matrix,331

α0 is zero, and b0 and z0 are column vectors with all zeros. To332

estimate r∗, we use the following Q-critic update333

αk+1 = αk + γk (g(xk , uk ) − αk ), (27)

zk+1 = λzk + φθk
(xk , uk ),

Ak+1 = Ak + γk (zkw
′
k − Ak ),

bk+1 = bk + γk [(g(xk , uk ) − αk )zk − bk ],

where wk = φθk (xk , uk ) − φθk
(xk+1 , uk+1) and γk is a step-334

size. Let rk be the estimate of r∗ at time k; we set335

rk+1 =

{
A−1
k+1bk+1 , if det(Ak+1) ≥ ε,

rk , otherwise,
(28)

where ε is a small positive constant used to judge whether Ak+1336

is “ill-conditioned” or not. Ak should be invertible when k is337

large enough [29], [30]. Our Q-critic (27) is the same with338

the critic update of the LSTD-AC algorithm in [14] and (28)339

estimates the same r∗. In addition, we add another critic, named340

as Q̃-critic, to estimate ti∗,∀i.341

Let now vi0 , i = 1, . . . , n, be a column vector with all zeros.342

Let also ηi0 , i = 1, . . . , n, be a scalar set to zero. Notice the343

relationship between Eq. (1) for theQ-function and Eq. (14) for344

the Q̃-function. To estimate ti∗, i = 1, . . . , n, defined in (25),345

we use the following LSTD Q̃-critic update346

ηik+1 = ηik + ζk (qik − ηik ), i = 1, . . . , n, (29)

vik+1 = vik + ζk [(qik − ηik )zk − vik ], i = 1, . . . , n,

where qik = Γ(rk )r
′
kφθk

(xk , uk )ψiθk
(xk , uk ) is an estimate of347

the ith component ofψθQθ which plays the role of the one-step348

reward in (14). ζk is the stepsize of the Q̃-critic and Γ(rk ) is a349

function that restricts the influence of the error in the estimate350

rk . Let tik be the estimate of ti∗ at time k. Similar to theQ-critic,351

we set352

tik+1 =

{
A−1
k+1v

i
k+1 , if det(Ak+1) ≥ ε,

tik , otherwise,
(30)

for i = 1, . . . , n. Note that the Sherman-Morrison update of a 353

matrix inverse [22] and the matrix determinant lemma [31] can 354

be applied to reduce the computational cost of calculating A−1
k+1 355

and det(Ak+1) in (28) and (30). 356

B. Actor Step 357

LetQr
θ(x, u) = Γ(r)r′φθ(x, u) and Q̃ti

θ = Γ(ti)ti
′
φθ(x, u) 358

be our estimates for Qθ and Q̃i
θ given r and ti , i = 1, . . . , n. 359

As mentioned above, the function Γ(·) restricts the influence 360

of the error in r and ti , respectively (cf. (21) and (24)). For 361

convenience of notation, let T = (t1 , . . . , tn ) and denote by 362

Q̃T
θ = (Q̃t1

θ , . . . , Q̃
tn
θ ) a vector-valued function mapping X × 363

U onto Rn with ith element equal to Q̃ti
θ . Motivated by (20) 364

and using just a single sample to estimate the expectation (in 365

a standard stochastic approximation fashion), we also define 366

Ûθ,r,T to be ann× nmatrix-valued function defined on X × U 367

and parameterized by (θ, r,T) as follows 368

Ûθ,r,T = Qr
θ(ϕθ −ψθψ

′
θ) + Q̃T

θ ψ
′
θ +ψθ(Q̃T

θ )
′
. (31)

Let Hk be the estimate of −∇2 ᾱ(θ) at time k with initial 369

condition H0 = I. The update rule for Hk is: 370

Hk+1 =

{
Hk + Uk , if Uk � 0,

Hk , otherwise,
(32)

where Uk = −Ûθk ,rk ,Tk
(xk , uk ). Note that Hk � 0 because 371

it is updated only when Uk � 0. Let χk be the number of times 372

the top branch in (32) is executed by iteration k and define 373

Ĥk =

{
I, if χk < χmin ,

Hk , otherwise,
(33)

which will be used to avoid a noisy estimate in the initial updates. 374

The actor update takes the form: 375

θk+1 = θk + βkΓ(rk )r
′
kφθk (xk , uk )Ĥ

−1
k ψθk

(xk , uk ), (34)

where βk is a stepsize. 376

In the update (32), we make sure that our scaling matrix is 377

always positive definite. Notice that Hk is the estimate of the 378

negative Hessian matrix because we are dealing with a maxi- 379

mization problem. In particular, the Hessian matrix will gener- 380

ally be negative definite in the vicinity of a local maximum and 381

we expect that the upper branch of the update (32) will be used 382

as we approach such a point. The iteration (34) takes a scaled 383

gradient ascent step, with the scaling matrix being positive 384

definite. 385

The sequences {γk} and {ζk} correspond to the stepsizes 386

used by the critics, while βk and Γ(rk ) control the stepsize for 387

the actor. The function Γ(rk ) is selected such that for some 388

positive constants C1 < C2 : 389

‖r‖Γ(r) ∈ [C1 , C2 ], ∀r ∈ RN , (35)

‖Γ(r) − Γ(r̂)‖ ≤ C2‖r − r̂‖
1 + ‖r‖ + ‖r̂‖ , ∀r, r̂ ∈ RN .

An example that satisfies these requirements is Γ(r) = 390

min(1,D/‖r‖) for some positive constant D. 391
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Fig. 1. Relationships between the critics and the actor.

We say a stepsize sequence {fk} is Square Summable but Not392

Summable (SSNS) if fk > 0,
∑∞

k=0 f
2
k <∞ and

∑∞
k=0 fk =393

∞. For the algorithm to converge, {ζk}, {γk}, and {βk} should394

be SSNS and satisfy395

∑

k

(βk/γk )
d1 <∞,

∑

k

(γk/ζk )
d2 <∞, (36)

for some d1 , d2 > 0.396

The relationships between the two critics and the actor are397

shown in Fig. 1. TheQ-critic and the Q̃-critic generate estimates398

rk and Tk = (t1
k , . . . , t

n
k ) which yield linear approximations of399

Qθ and Q̃θ, respectively. Both critics need to converge faster400

than the actor in order to track the changes in θ. Moreover,401

because the observed derivative qik used in the Q̃-critic depends402

on rk , the Q̃-critic is updated faster than the Q-critic so that it403

can track changes in rk . We next present a result establishing a404

relationship between the stepsize sequences.405

Proposition V.1: Suppose {ζk} and {βk} are two SSNS step-406

size sequences that satisfy407

∑

k

(βk/ζk )
d <∞, for some d > 0. (37)

Let γk = (ζkβk )1/2 . Then, {γk} is also SSNS and {γk} , {βk} ,408

{ζk} satisfy (36).409

Proof: Due to the assumption in (37), limk→∞(βk/ζk ) = 0,410

which implies that there exists a positive constant K such that411

for ∀k > K, βk ≤ ζk . Since {βk} is SSNS, it follows412

∑

k

γk =
∑

k

(ζkβk )1/2 ≥ C1 +
∞∑

k=K+1

βk = ∞,

where C1 =
∑K

k=0 γk . Furthermore, since {ζk} is SSNS413

∑

k

γ2
k =

∑

k

ζkβk ≤ C2 +
∞∑

k=K+1

ζ2
k <∞,

whereC2 =
∑K

k=0 γ
2
k . Finally, letting d1 = d2 = 2d and due to414

(37) we have415

∑

k

(βk/γk )d1 ‘ =
∑

k

(γk/ζk )d2 =
∑

k

(βk/ζk )d <∞.

�416

Proposition V.1 simplifies the selection of stepsizes. We just417

need to select βk and ζk first and let γk = (ζkβk )1/2 . An exam-418

ple of {ζk}, {γk}, and {βk} that are SSNS and satisfy (36)419

is: ζk = 1/k, βk = c/(k ln k), where k > 1 and c > 0, and 420

γk = (ζkβk )1/2 = (1/k)
√
c/ ln k. 421

C. Relationship With Natural Actor-Critic Algorithms 422

In our approach, we use the Hessian matrix to scale the gra- 423

dient in order to improve the convergence rate. A similar idea 424

is to use the Fisher information matrix to scale the gradient. It 425

was first proposed by [19] and several related algorithms fol- 426

lowed [20], [23], [21]. This section discusses the relationship 427

of the Fisher information matrix with the Hessian matrix for 428

actor-critic algorithms. 429

Suppose ηθ(x, u) is the stationary state-action distribution 430

when the RSP parameter equals θ. [20] states that the Fisher 431

information matrix is equal to 432

Fθ =
∑

x,u

ηθ(x, u)∇ lnμθ(u|x)∇ lnμθ(u|x)
′
, (38)

which can also be written as
〈
1,ψθψ

′
θ

〉

θ
, where ψθ = 433

∇ lnμθ(u|x) (cf. (3)). 434

Let us now compare this expression with the true Hessian 435

matrix (cf. (9)). If we set Qθ ≡ 1, hence, ∇Qθ ≡ 0, and ignore 436

second derivatives with respect to θ, then the Hessian matrix 437

degenerates to the Fisher information matrix in (38). In this 438

sense, natural actor-critic algorithms are quasi-Newton methods 439

that approximate the Hessian without utilizing the state-action 440

value function Qθ. In contrast, our method takes advantage of 441

the state-action value function. 442

VI. CONVERGENCE 443

A. Linear Stochastic Approximation Driven by a Slowly 444

Varying Markov Chain 445

Our Q-critic in (27) has the same form as in [14] so its 446

convergence can be proved in a similar way. In the Q̃-critic 447

(29), the increment qik depends on the parameter vector rk . 448

To facilitate the convergence proof of the Q̃-critic, this sec- 449

tion generalizes the theory of linear stochastic approximation 450

driven by a slowly varying Markov chain developed in [12] 451

to the case where the objective is affected by some additional 452

parameters r. 453

Let {yk} be a finite Markov chain whose transition probabili- 454

ties depend on a parameter θ ∈ Rn . Let {hθ,r(·) : θ ∈ Rn , r ∈ 455

RN } be a family ofm-vector-valued functions parameterized by 456

θ ∈ Rn and r ∈ RN . Let Ξk be some m×m matrix. Consider 457

the following iteration to update a vector s ∈ Rm : 458

sk+1 = sk + ζk (hθk ,rk (yk ) − Gθk
(yk )sk ) + ζkΞksk . (39)

In the above iteration, sk ∈ Rm is the approximation vector. 459

hθ,r(·) and Gθ(·) are m-vector-valued and m×m-matrix- 460

valued functions parameterized by θ, r and θ, respectively. Let 461

E [·] denote expectation. In order to establish the convergence 462

results, we make the following assumptions. 463

Assumption A: 464

1) The sequence {ζk} is deterministic, non-increasing and 465

SSNS. 466
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2) The random sequence {θk} satisfies ‖θk+1 − θk‖ ≤467

βkFk for some process {Fk} with bounded moments,468

where {βk} is a positive deterministic sequence such469

that
∑

k (βk/ζk )
d <∞ for some d > 0.470

3) Ξk is an m×m-matrix valued martingale difference471

with bounded moments.472

4) The (random) sequence {rk} satisfies ‖rk+1 − rk‖ ≤473

γkF
r
k for some nonnegative process {Fr

k }with bounded474

moments, where {γk} is a positive sequence such that475 ∑
k (γk/ζk )

d <∞ for some d > 0.476

5) rk converges to r̄(θk ) when k → ∞, namely,477

limk→∞ ‖rk − r̄(θk )‖ = 0, w.p.1.478

6) (Existence of solution to the Poisson Equation.) For each479

θ and r, there exists h̄(θ, r) ∈ Rm , Ḡ(θ) ∈ Rm×m ,480

and corresponding m-vector and m×m-matrix func-481

tion ĥθ,r(·), Ĝθ(·) that satisfy the Poisson equation.482

That is, for each y,483

ĥθ,r(y) = hθ,r(y) − h̄(θ, r) + (Pθĥθ,r)(y),

Ĝθ(y) = Gθ(y) − Ḡ(θ) + (PθĜθ)(y).

7) (Boundedness.) For all θ and r, we have484

max(‖h̄(θ, r)‖, ‖Ḡ(θ)‖) ≤ C for some constant C.485

8) (Boundedness in expectation.) For any d > 0, there ex-486

ists Cd > 0 such that supk E[‖fθk
(yk )‖d ] ≤ Cd and487

supk E[‖gθk ,rk (yk )‖d ] ≤ Cd, where fθ(·) represents488

Gθ(·) and Ĝθ(·), and gθ,r(·) represents hθ,r(·) and489

ĥθ,r(·).490

9) (Lipschitz continuity.) For some constant C > 0, and491

for all θ, θ̄ ∈ Rn , ‖Ḡ(θ) − Ḡ(θ̄)‖ ≤ C‖θ − θ̄‖. For492

all θ, θ̄ ∈ Rn and r, r̄ ∈ RN , ‖h̄(θ, r) − h̄(θ̄, r̄)‖ ≤493

C(‖θ − θ̄‖ + ‖r − r̄‖).494

10) (Lipschitz continuity in expectation.) There exists a495

positive measurable function C(·) such that for ev-496

ery d > 0, supk E
[
C(yk )d

]
<∞. In addition, for all497

θ, θ̄ ∈ Rn , ‖fθ(y) − fθ̄(y)‖ ≤ C(y)‖θ − θ̄‖, where498

fθ(·) represents Gθ(·) and Ĝθ(·). For all θ, θ̄ ∈499

Rn and r, r̄ ∈ RN , ‖gθ,r(y) − gθ̄,r̄(y)‖ ≤ C(y)(‖θ −500

θ̄‖ + ‖r − r̄‖), where gθ,r(·) represents hθ,r(·) and501

ĥθ,r(·).502

11) There exists a > 0 such that for all s ∈ Rm and θ ∈ Rn ,503

s
′
Ḡ (θ) s ≥ a‖s‖2 .504

Lemma VI.1: If Assumptions A.(1–11) are satisfied, then505

limk→∞ ‖Ḡ(θk )sk − h̄(θk , rk )‖ = 0 w.p.1.506

Proof: See Appendix A. �507

Theorem VI.2: If Assumptions A.(1–11) are satisfied, then508

limk→∞ ‖Ḡ (θk ) sk − h̄ (θk , r̄(θk )) ‖ = 0 w.p.1.509

Proof: We have510

‖Ḡ(θk )sk − h̄(θk , r̄(θk ))‖
≤ ‖Ḡ(θk )sk − h̄(θk , rk )‖ + ‖h̄(θk , rk ) − h̄(θk , r̄(θk ))‖.

Due to Assumption A.(9), we have511

lim
k→∞

‖h̄ (θk , rk ) − h̄ (θk , r̄(θk )) ‖ ≤ C lim
k→∞

‖rk − r̄(θk )‖,

where C is a constant. Combining the above, we have 512

0 ≤ lim
k→∞

‖Ḡ(θk )sk − h̄(θk , r̄(θk ))‖

≤ 0 + lim
k→∞

‖h̄(θk , rk ) − h̄(θk , r̄(θk ))‖

≤ 0 + C lim
k→∞

‖rk − r̄(θk )‖
= 0, w.p.1,

where the second inequality follows from Lemma VI.1 and 513

the equality is due to Assumption A.(5). We conclude that 514

limk→∞ ‖Ḡ(θk )sk − h̄ (θk , r̄(θk )) ‖ = 0, w.p.1. 515

B. Critic Convergence 516

In this section, we will use the results in Section VI-A to prove 517

the convergence of the Q-critic and the Q̃-critic presented in 518

Section V-A. Before presenting the convergence results, we first 519

state the following assumptions and definitions. 520

Assumption B: There exists a function L̃ : X → [1,∞) and 521

constants 0 ≤ ρ < 1, b > 0 such that for each θ ∈ Rn , 522

Eθ,x [L̃(x1)] ≤ ρL̃(x) + bIx∗(x), ∀x ∈ X, (40)

where Eθ,x [·] denotes expectation under θ with initial state x, 523

Ix∗(·) is the indicator function for the initial state x∗ being equal 524

to the argument of the function, and x1 is the (random) state of 525

the MDP after one transition from the initial state. 526

The assumption above is identical to [12, Assumption 2.5]. 527

We call a function satisfying the inequality (40) a stochastic 528

Lyapunov function. Let L : X × U → [1,∞) be a function that 529

satisfies the following assumption. 530

Assumption C: For each d > 0 there is Kd > 0 such that 531

Eθ,x [L (x, U0)
d ] ≤ KdL̃(x), ∀x ∈ X,θ ∈ Rn ,

where U0 is the random variable of the action at state x. 532

Note that if any function is upper bounded by a function L 533

as described in Assumption C, then all its steady-state moments 534

are finite. 535

Lemma VI.3: If two functions Lf : X × U → [1,∞) and 536

Lg : X × U → [1,∞) satisfy Assumption C, then so does 537

LfLg . 538

Proof: For any two random variables A and B, E[AB] ≤ 539

(1/2)(E[A2 ] + E[B2 ]). As a result, we have 540

Eθ,x
[
Lf (x, U0)dLg (x, U0)d

]

≤ 1
2
Eθ,x

[
Lf (x, U0)2d]+

1
2
Eθ,x

[
Lg (x, U0)2d]

≤ 1
2
(Kf

2d +Kg
2d)L̃ (x) ,

where Kf
2d and Kg

2d are the bounding constants of f and g 541

appearing in Assumption C. � 542

Definition 1: We define D(2) to be the family of all functions 543

fθ(x, u) that satisfy: for all x ∈ X and u ∈ U , there exists a 544
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constant K > 0 such that545

‖fθ(x, u)‖ ≤ KL(x, u), ∀θ ∈ Rn , (41)

‖fθ(x, u) − fθ̄(x, u)‖ ≤ K‖θ − θ̄‖L(x, u), ∀θ, θ̄ ∈ Rn ,
(42)

where the bounding function L satisfies Assumption C.546

Lemma VI.4: If fθ,gθ ∈ D(2) , then fθ + gθ ∈ D(2) and547

fθgθ ∈ D(2) .548

Proof: The proof for fθ + gθ is immediate; we focus on549

fθgθ. Inequality (41) can be proved using Lemma 4.3(f) of [4].550

To prove inequality (42),551

‖fθgθ − fθ̄gθ̄‖ = ‖fθgθ + fθgθ̄ − fθgθ̄ − fθ̄gθ̄‖
≤ ‖fθ‖‖gθ − gθ̄‖ + ‖gθ̄‖‖fθ − fθ̄‖
≤ 2KfKgLf Lg‖θ − θ̄‖,

where Kf and Lf are the bounding constant and the bounding552

function for f in (41) and (42), while Kg and Lg are the cor-553

responding quantities for g. According to Lemma VI.3, LfLg554

also satisfies Assumption C, which completes the proof. �555

We assume φθ ∈ D(2) , which556

is the same with Assumption 4.1557

of [12]. This assumption ensures that the feature vector558

φθ =
(
φ1

θ, . . . , φ
N
θ

)
, as a function of the policy parameter θ,559

is “well behaved.” Given our feature vector definition, notice560

that this assumption requires that the RSP function family μθ561

is twice continuously differentiable for all θ with bounded first562

and second derivatives that belong to D(2) . We also assume that563

the one-step reward function g ∈ D(2) .564

The critic consists of two parts: a Q-critic that estimates Qθ565

(cf. (27), (28)) and a Q̃-critic that estimates Q̃θ (cf. (29), (30)).566

The Q-critic is exactly the same with the LSTD-AC algorithm567

[14], whose convergence has already been proved in [14] under568

the assumptions imposed. For the Q̃-critic, denote by V(A) a569

column vector stacking all columns in a matrix A. The Q̃-critic570

can be written as in (39) if we let571

sk =
[
Mη1

k · · ·Mηnk (v1
k )

′ · · · (vnk )
′
]′
, (43)

hθ,r(y) =
[
MΓ(r)r

′
φθ(x, u)ψθ(x, u)

Γ(r)r
′
φθ(x, u)V(zψ

′
θ(x, u))

]

,

Gθ(y) =
[

I 0
diag(z, . . . , z)/M I

]

Ξk = 0,

where diag(z, . . . , z) denotes an nN × n block diagonal matrix572

with every diagonal element being equal to z, y = (x, u, z) , M573

is an arbitrary (large) positive constant whose role is to facilitate574

the convergence proof, and at any iteration k of (39) rk iterates575

as in (28). The stochastic process {zk} is the eligibility trace576

iterating as in (27).577

To prove the convergence of the Q̃-critic, we just need578

to verify Assumptions A.(1–11). It is easy to verify that579

zk =
∑k−1

l=0 λk−l−1φθl (xl , ul). First, we establish the following580

lemma.581

Lemma VI.5: For every d > 0, we have 582

supk E[L(xk , uk )d‖zk‖d ] <∞, where L : X × U → [1,∞) 583

is a bounded function that satisfies Assumption C. 584

Proof: According to the triangle inequality, we have 585

‖zk‖d = ‖
k−1∑

l=0

λk−l−1φθl
(xl , ul)‖d

≤
k−1∑

l=0

λd(k−l−1)‖φθl (xl , ul)‖d

≤ K1

k−1∑

l=0

λd(k−l−1)L1(xl , ul)d ,

for some bounded function L1 that satisfies Assumption C and 586

some positive constant K1 , where the last inequality is due to 587

φθk
∈ D(2) . In addition, we can multiply with L(xk , uk )d and 588

take expectation on both sides of the above, which yields 589

E[L(xk , uk )d‖zk‖d ]

≤ K1

k−1∑

l=0

λd(k−l−1)E[L(xk , uk )dL1(xl , ul)d ]. (44)

Similar to the proof of Lemma VI.3, 590

E[L(xk , uk )dL1(xl , ul)d ] (45)

≤ 1
2
E[L(xk , uk )2d ] +

1
2
E[L1(xl , ul)2d ] <∞.

Combining (44) and (45), we establish that E[L(xk , uk )d‖zk‖d ] 591

is bounded. � 592

Theorem VI.6: Under iterations (27) and (28), 593

‖rk+1 − rk‖ ≤ γkF
r
k , w.p.1, (46)

for some random sequence {Fr
k } that has bounded moments, 594

where {γk} is the stepsize in (27). 595

Proof: SeeAppendix B. � 596

Using SSNS stepsizes according to (36), Assumptions A.(1) 597

and (4) will be satisfied because of Theorem VI.6. Now, ‖r‖Γ(r) 598

is bounded because of (35). According to (31), Uk has bounded 599

moments because ψθ (x, u) , φθ (x, u) , Qθ, and Q̃i
θ, ∀i, have 600

bounded moments. Hk and Ĥk should also have bounded mo- 601

ments because the update in (32) is applied only when Uk is pos- 602

itive definite. As a result, Γ(rk )r
′
kφθk

(xk , uk )Ĥkψθk
(xk , uk ) 603

should have bounded moments, thus, Assumption A.(2) holds. 604

Assumption A.(3) is trivially satisfied. In addition, because the 605

Q-critic converges, we have 606

lim
k→∞

‖rk − r̄(θk )‖ = 0, w.p.1,

which is Assumption A.(5). 607

For i = 1, . . . , n, define the function ξiθ = φθψ
i
θ. Because 608

φθ ∈ D(2) and ψθ ∈ D(2) , we obtain ξiθ ∈ D(2) according to 609

Lemma VI.4. Notice that for any fixed r and θ, the Q̃-critic (43) 610

is equivalent to the Q-critic of an artificial Markov decision 611

process with reward function giθ,r(x, u) = Γ(r)r
′
ξiθ(x, u), i = 612

1, . . . , n. As a result, the Poisson equations of Assumption A.(6) 613
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should be satisfied with appropriately defined average steady-614

state quantities h̄(θ, r) and Ḡ(θ). More specifically, similar to615

[4, Sec. 5.2], we have616

κ̄i(θ, r) =
〈
1, giθ,r

〉
θ
,

z̄(θ) = (1 − λ)−1 〈1,φθ〉θ ,

hi1(θ, r) =
∞∑

k=0

λk
〈
Pk

θ g
i
θ,r − κ̄i(θ, r)1,φθ

〉
θ
,

h̄(θ, r) = (Mκ̄1(θ, r), . . . ,Mκ̄n (θ, r),

(h1
1(θ, r) + κ̄1(θ, r)z̄(θ), . . . ,

(hn1 (θ, r) + κ̄n (θ, r)z̄(θ)),

Ḡ(θ) =
[

I 0
diag(z̄(θ), . . . , z̄(θ))/M I

]

,

where Pk
θ denotes the application of the operator Pθ k times.617

We can interpret κ̄i(θ, r) as the steady-state expectation of the618

“observed reward” function giθ,r .619

Let now h̃iθ,r(y) = Γ(r)r
′
ξiθ(x, u)z, i = 1, . . . , n. It can be620

seen that if h̃iθ,r are bounded and Lipschitz continuous in ex-621

pectation for all i = 1, . . . , n, then hθ,r should also be bounded622

and Lipschitz continuous in expectation. Recall that ξiθ ∈ D(2) .623

For i = 1, . . . , n and each d > 0,624

sup
k

E
[
‖h̃iθ,r (yk ) ‖d

]

≤ (Γ(r)‖r‖)d sup
k

E
[‖ξiθ(xk , uk )‖d‖zk‖d

]

≤ (Γ(r)‖r‖)d Kd sup
k

E
[
L(xk , uk )d‖zk‖d

]
,

for some function L that satisfies Assumption C and some posi-625

tive constant K. According to (35), Γ(r)‖r‖ is bounded. Using626

Assumption C and Lemma VI.5, it follows that h̃iθ,r satisfies627

Assumption A.(8). Using Lemma VI.5 it also follows that Gθ628

satisfies the same assumption.629

It is easy to verify that the function f(r) = Γ(r)r is Lipschitz630

continuous and suppose its Lipschitz constant is CΓ . We will631

next prove that h̃iθ,r(y) is Lipschitz continuous in expectation.632

For all θ, θ̄ ∈ Rn , r, r̄ ∈ RN , and i = 1, . . . , n, we have633

‖h̃iθ,r(y) − h̃iθ̄,r̄(y)‖
≤ ‖Γ(r)r

′
ξiθ(x, u)z − Γ(r̄)r̄

′
ξiθ̄(x, u)z‖

≤ ‖z‖Γ(r)‖r′ (
ξiθ(x, u) − ξiθ̄(x, u)

) ‖
+ ‖z‖‖ (Γ(r)r − Γ(r̄)r̄)

′
ξiθ̄(x, u)‖

≤ ‖z‖Γ(r)‖r‖‖ξiθ(x, u) − ξiθ̄(x, u)‖
+ ‖z‖‖ξiθ̄(x, u)‖CΓ‖r − r̄‖. (47)

Recall that ξiθ ∈ D(2) . Let K and L be the bounding constant634

and the bounding function for ξiθ; then635

‖h̃iθ,r(y) − h̃iθ̄,r̄(y)‖ ≤ C(y)
(‖θ − θ̄‖ + ‖r − r̄‖) ,

where C(y) = (Γ(r)‖r‖ + CΓ)KL(x, u)‖z‖ and y = (x, 636

u, z). Using the fact that Γ(r)‖r‖ is bounded and Lemma VI.5, 637

it follows that E[C(y)d ] <∞ for each d > 0. As a result, hθ,r 638

satisfies Assumption A.(10). Moreover, replicating an argument 639

from [4, Sec. 5.2] it can also be shown that Gθ satisfies the same 640

assumption. Furthermore, defining 641

ĥθ,r(y) =
∞∑

k=0

Eθ,x [hθ,r(yk ) − h̄(θ, r)|y0 = y],

Ĝθ(y) =
∞∑

k=0

Eθ,x [Gθ(yk ) − Ḡ(θ)|y0 = y],

we can use similar arguments as above to establish that these 642

functions satisfy Assumption A.(8) and (10). 643

Lemma VI.7: Let θ̂ = (θ, r). Let also D̂(2) be the counter- 644

part of D(2) for functions parameterized by θ̂. Then Pk
θ g

i
θ,r 645

belongs to D̂(2) for all nonnegative integers k. 646

Proof: A simple observation is that D(2) ⊆ D̂(2) and that 647

Lemma VI.4 still holds for D̂(2) . Namely, a product function 648

fθ̂gθ̂ ∈ D̂(2) if fθ̂ ∈ D̂(2) and gθ̂ ∈ D̂(2) . 649

Pk
θ g

i
θ,r can be written as Pk

θ g
i
θ,r = Γ(r)r

′
Pk

θ ξ
i
θ. We first 650

observe that Pk
θ ξ

i
θ ∈ D(2) according to [32, Corollary 2.4]. To 651

verify (41), we have (in functional relationships) 652

‖Pk
θ g

i
θ,r‖ ≤ Γ(r)‖r‖‖Pk

θ ξ
i
θ‖ ≤ Γ(r)‖r‖KL.

To verify (42), for θ, θ̄ ∈ Rn and r, r̄ ∈ RN , we have 653

‖Pk
θ g

i
θ,r − Pk

θ̄ g
i
θ̄,r̄‖

≤ Γ(r)‖r‖‖Pk
θ ξ

i
θ − Pk

θ̄ ξ
i
θ̄‖ + ‖Pk

θ̄ ξ
i
θ̄‖CΓ‖r − r̄‖

≤ Γ(r)‖r‖KL‖θ − θ̄‖ +KLCΓ‖r − r̄‖
≤ (Γ(r)‖r‖ + CΓ)KL

(‖θ − θ̄‖ + ‖r − r̄‖) ,
whereK andL are the bounding constant and function ofPk

θ ξ
i
θ, 654

respectively. � 655

Using the fact that giθ,r ,φθ ∈ D(2) , κ̄i(θ, r) and z̄(θ) are 656

bounded and Lipschitz continuous with respect to θ̂ due to 657

[32, Corollary 5.3]. It can be easily verified that (Pk
θ g

i
θ,r − 658

κ̄i(θ, r)1)φθ ∈ D̂(2) using Lemma VI.7 and Lemma VI.4. 659

Again, using [32, Corollary 5.3], we can obtain that h̄(θ, r) 660

is bounded and Lipschitz continuous with respect to θ̂. As a 661

result, h̄(θ, r) satisfies Assumption A.(7) and (9). Similarly, it 662

can also be shown that Ḡ(θ) satisfies the same assumptions. 663

Finally, it can also be verified that ĥθ,r(y) and Ĝθ(y) satisfy 664

the same assumptions using similar arguments. 665

The final step in verifying all parts of Assumption A is part 666

(11). That follows from [4, Lemma 5.3]. Having established all 667

parts of Assumption A, the convergence of the Q̃-critic follows. 668

C. Actor Convergence 669

The actor update defined in (34) is similar to the actor update 670

using the unscaled gradient. The difference is that the gradient 671

estimate is multiplied by a positive definite matrix. This sec- 672

tion will present the convergence results for this type of actors. 673
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Define674

Sθ(x, u) = Hθψθ(x, u)φ
′
θ(x, u),

where Hθ is a positive definite matrix for all θ. Let S̄(θ) =675

〈1,Sθ〉θ and let r̄(θ) be the limit of the critic parameter r if the676

policy parameter is held fixed to θ. Similar to [12], the actor677

update can be written as678

θk+1 = θk + βkSθ(xk , uk )rkΓ(rk )

= θk + βk S̄(θk )r̄(θk )Γ(r̄(θk ))

+βk
(
Sθk

(xk , uk ) − S̄(θk )
)
rkΓ(rk )

+βk S̄(θk ) (rkΓ(rk ) − r̄(θk )Γ(r̄(θk ))) .

Define679

f(θk ) = S̄(θk )r̄(θk ),

e(1)
k =

(
Sθk (xk , uk ) − S̄(θk )

)
rkΓ(rk ),

e(2)
k = S̄(θk ) (rkΓ(rk ) − r̄(θk )Γ(r̄(θk ))) .

Then, the actor update becomes:680

θk+1 = θk + βk

(
Γ(r̄(θk ))f(θk ) + e

(1)
k + e

(2)
k

)
.

f(θk ) is the expected actor update, while e(1)
k and e(2)

k are two681

error terms due to the fact that the update is performed on a682

sample path of the MDP. Using Taylor’s series expansion,683

ᾱ(θk+1) ≥ ᾱ(θk ) + βkΓ(r̄(θk ))∇ᾱ(θk )
′
f(θk )

+βk∇ᾱ(θk )
′
e(1)
k + βk∇ᾱ (θk )

′
e(2)
k .

Lemma VI.8: (Convergence of the noise terms). It holds:684

� ∑∞
k=0 βk∇ᾱ(θk )

′
e(1)
k converges w.p.1.685

� limk e(2)
k = 0 w.p.1.686

Proof: Let ê(1)
k =

(
ξθk

(xk , uk ) − ξ̄(θk )
)
rkΓ(rk ) and687

ê(2)
k = ξ̄(θk ) (rkΓ(rk ) − r̄(θk )Γ(r̄(θk ))) , where ξθ(x, u) =688

ψθ(x, u)φ
′
θ(x, u) and ξ̄(θ) = 〈1, ξθ〉θ = 〈ψθ,φ

′
θ〉θ . Then,689

ê(1)
k and ê(2)

k are the two error terms for the actor up-690

date using the unscaled gradient [4]. It easily follows691

that e(1)
k = Hθk

ê(1)
k and e(2)

k = Hθk
ê(2)
k . Furthermore,692

Sθk
(xk , uk ) = H−1

θk
ξθk

(xk , uk ). The lemma can be proved by693

combining these facts with [4, Lemma 6.2]. �694

Lemma VI.8 shows that e(1)
k can be averaged out and e(2)

k695

goes to zero. As a result, the two error terms are negligible and696

the update is determined by the expected direction f(θ) in the697

long run.698

Lemma VI.9: We have f(θ) = g(θ) + ε(λ,θ), where g(θ)699

is a function such that ∇ᾱ(θ)
′
g(θ) ≥ 0, and supθ |ε(λ,θ)| <700

C(1 − λ) for some constant C > 0 independent of λ.701

Proof: According to (5), ∇ᾱ(θ) = 〈ψθ, Qθ〉θ =702

〈ψθ,φ
′
θ r̄(θ)〉θ = ξ̄(θ)r̄(θ). For λ = 1, we have703

∇ᾱ(θ)
′
f(θ) = ∇ᾱ(θ)

′
S̄(θ)r̄(θ)

= r̄(θ)
′
ξ̄(θ)

′
S̄(θ)r̄(θ).

Notice that ξ̄ (θ)
′
S̄ (θ) � 0. Specifically, 704

ξ̄(θ)
′
S̄(θ) = 〈ψ′

θ,φθ〉θ
〈
Hθ,ψθφ

′
θ

〉

θ

= Hθξ̄(θ)
′
ξ̄(θ),

where Hθ � 0 and ξ̄(θ)
′
ξ̄(θ) � 0 by construction. As a result, 705

ξ̄(θ)
′
S̄(θ) � 0, which implies that ∇ᾱ(θ)

′
f(θ) ≥ 0. 706

The proof for λ < 1 follows the proof in [4]. Let us write 707

r̄λ(θ) for the steady-state expectation of rk . Following the 708

proof of [4], we have ‖r̄λ(θ) − r(θ)‖ ≤ C0(1 − λ) for some 709

positive constant C0 . Let g(θ) = S̄(θ)r̄(θ), where r̄ (θ) is 710

the steady-state expectation of rk when λ = 1. Then we can 711

still obtain ∇ᾱ(θ)
′
g(θ) ≥ 0. In addition, ‖f(θ) − g(θ)‖ = 712

‖S̄(θ)(r̄λ(θ) − r̄(θ))‖ ≤ C(1 − λ) for some C. � 713

Lemma VI.9 shows that the expected direction f(θ) is always 714

a gradient ascent direction for λ sufficiently close to 1. We arrive 715

at the following convergence result whose proof is similar to [4, 716

Thm. 6.3]. 717

Theorem VI.10 Actor Convergence: For any ε > 0, there ex- 718

ists some λ sufficiently close to 1 such that the second- 719

order Actor-Critic algorithm satisfies limk→∞ infk |∇ᾱ(θk )| < 720

ε w.p.1. That is, θk visits an arbitrary neighborhood of a sta- 721

tionary point infinitely often. 722

VII. CASE STUDY 723

A. Garnet Problem 724

This section reports empirical results from our method applied 725

to GARNET problems introduced in [23]. GARNET problems 726

do not correspond to any particular application; they are meant 727

to be generic, yet, representative of MDPs one encounters in 728

practical applications [23]. As we mentioned earlier, GARNET 729

stands for “Generic Average Reward Non-stationary Environ- 730

ment Testbed.” 731

A GARNET problem is characterized by 5 parameters and 732

can be written as GARNET(n,m, b, σ, τ). The parametersn and 733

m are the number of states and actions, respectively. For each 734

state-action pair, there are b possible next states, and each next 735

state is chosen randomly without replacement. The transition 736

probabilities to these b states are generated as follows: we divide 737

a unit-length interval into b segments by choosing b− 1 breaking 738

points according to a uniform random distribution. The lengths 739

of these segments represent the transition probabilities and they 740

are randomly assigned to the b states we have already selected. 741

The expected reward for each transition is a normally dis- 742

tributed random variable with zero mean and unit variance. The 743

actual reward is a normally distributed random variable whose 744

mean is the expected reward and whose variance is 1. 745

The parameter τ, 0 ≤ τ ≤ 1/n, determines the degree of non- 746

stationarity in the problem. If τ = 0, the GARNET problem is 747

stationary. Otherwise, if τ > 0, one of the states will be se- 748

lected with probability nτ at each time step and randomly re- 749

constructed as described above. 750

To apply the actor-critic algorithm, the key step is to de- 751

sign an RSP μθ(u|x). In this case study, we define the 752

RSP to be the Boltzmann distribution that is based on some 753a
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state-action features. Good state-action features should be inter-754

pretable and could help reduce the number of parameters in the755

RSP.756

We first define the state feature fS(x) to be a binary vec-757

tor of length d, i.e., fS(x) ∈ {0, 1}d , for each state x. There758

is a parameter l specifying the number of components in the759

state feature that are equal to 1. State features are randomly760

generated and we make sure no two states have the same state761

feature.762

In [23], the state-action feature is constructed by padding ze-763

ros to state features so that the features for different actions are764

orthogonal. As a result, the dimensionality of the state-action765

feature constructed in this manner is equal to d|U |. This ap-766

proach significantly increases the feature dimensionality, espe-767

cially when the action space is very large. In this paper, we use768

the state-action feature described below. For each state x0 and769

action u, the state-action feature is:770

fSA(x0 , u) = E[fS(x1)|u] − fS(x0), (48)

where E[fS(x1)|u] =
∑

x1
p(x1 |x, u)fS(x1) is the expected771

feature at the next state after applying action u.772

With the state-action feature as in (48), the probability of773

taking action u in state x is set to774

μθ(u|x) =
efSA (x,u)′θ/T

∑
u∈U efSA (x,u)′θ/T , (49)

which is a typical Boltzmann distribution with T being the775

temperature of the distribution. With the state-action feature776

described above, we can interpret −fSA (x, u)′θ as the “en-777

ergy” and the distribution prefers actions that lead to lower778

energy.779

A common consideration in RSP design is the so-called780

exploitation-exploration tradeoff [2]. An RSP exhibits higher781

exploitation if it is more greedy, i.e., it is more likely to only782

pick the most desirable action. However, sometimes the explo-783

ration of undesirable actions is necessary because they may be784

desirable in the long run. High exploitation and low exploration785

may result in a sub-optimal solution. On the contrary, low ex-786

ploitation and high exploration may reduce the convergence rate787

of the actor-critic algorithm. Our RSP defined in (49) is flexible788

because tuning T in (49) can effectively adjust the degree of ex-789

ploration. High temperature T implies more exploration while790

low temperature T implies more exploitation.791

In this empirical study, we compare our algorithm with the792

LSTD-AC algorithm in [14], and the four algorithms in [23],793

which are henceforth referred to as BSGL1 to BSGL4, in a794

GARNET problem GARNET(50, 4, 5, 0.1, 0). BSGL1 is based795

on a “vanilla” gradient ascent and BSGL2-BSGL4 are based on796

natural gradients. Henceforth, for state features we let d = 8 and797

l = 3. The state-features are randomly assigned and we make798

sure no two states have the same state-feature. For all algorithms,799

the critic step-size is αk = α0 ·αc
αc +k 2 / 3 and the actor stepsize βc =800

β0 ·βc
βc +k , whereαc = βc = 1000. For the LSTD actor-critic and our801

method α0 = 0.1 and β0 = 0.1. For BSGL1 and BSGL2, α0 =802

0.1 and β0 = 0.01. For BSGL3 and BSGL4, we choose α0 =803

0.01 and β0 = 0.001. For all algorithms, the initial parameters804

Fig. 2. Comparison of our algorithm with LSTD and natural actor-critic
algorithms.

θ0 are zero and the temperature in (49) is set to T = 1. For our 805

algorithm, we choose χmin = 100 (cf. (33)). 806

We run each algorithm 50 times independently and Fig. 2 807

displays the mean of the average reward for the first 1,000,000 808

iterations. Table I summarizes the convergence time and con- 809

verged average reward for each algorithm. For each problem, 810

the first two columns of Table I show the mean and standard de- 811

viation of the reward achieved. The third and fourth columns list 812

the time (mean and standard deviation) it takes to convergence. 813

The last column shows the average CPU time per iteration (TPI). 814

The results are based on 50 independent runs for the GARNET 815

problem and 100 independent runs for the robot control problem. 816

Note that BSGL2 becomes numerically unstable after 500,000 817

iterations, so the reward of BSGL2 in Table I is the maximal 818

reward before numerical instability occurs and the time is the 819

time it takes to reach the maximal reward. 820

Compared to the LSTD-AC method, our method adds a 821

second-order critic update and takes advantage of the Hessian 822

estimate in the actor update. For this problem, the average CPU 823

time of one LSTD-AC iteration is 1288 μs. In comparison, the 824

average CPU time for one iteration of our algorithm is 1818 μs, 825

which means that computing the second-order critic and the in- 826

verse of the Hessian adds about 41% to the computational cost. 827

Despite the larger CPU time per iteration, our algorithm still 828

converges faster than LSTD-AC because fewer iterations are 829

needed. The CPU time per iteration of both our algorithm and 830

LSTD-AC is larger than BSGL1-4. This is likely because both 831

our algorithm and LSTD-AC use a state-action feature vector, 832

whose dimensionality is larger than the one used in BSGL1-4 833

for value function approximations. 834

Among the four algorithms in [23], BSGL3 converges faster, 835

which is consistent with the empirical study in [23]. Compared to 836

BSGL3, although our algorithm uses longer time to converge, it 837

converges to higher value (0.33) than BSGL3 (0.24). On average 838

our algorithm takes only 43 seconds to reach an average reward 839

of 0.24 vs. 122 seconds needed by BSGL3 to reach the same 840

value. 841

E_1 [f_s(x_0)]

greedier

move this to line 910 in page 13
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TABLE I
COMPARISON OF ALL ALGORITHMS IN A GARNET AND A ROBOT CONTROL PROBLEM.

GARNET Robot Control

Alg. Name Reward Conv. Time (s) TPI(μ s) Reward Conv. Time (s) TPI(μ s)

Mean Std Mean Std Mean Std Mean Std

Our Alg. 0.33 0.070 727 10.9 1818 0.0916 0.00109 118 3.0 3281
LSTD-AC 0.29 0.091 773 9.9 1288 0.0851 0.0235 187 23 2837
BSGL-1 0.11 0.083 540 7.5 601 0.0819 0.000731 217 2.9 2173
BSGL-2 0.16 0.078 342 4.4 684 0.0909 0.00136 231 9.8 2313
BSGL-3 0.24 0.093 122 1.6 678 0.0927 0.000936 142 6.4 2372
BSGL-4 0.28 0.082 686 11.6 686 0.0916 0.000860 209 5.0 2319

For BSGL2, the Table Displays the Maximal Average Reward Before Numerical Instability Happens and the Time to
Reach the Reward

Fig. 3. View of the mission environment, where the initial region is
marked by ‘‘x’’, the goal regions are marked by green colors, and the
unsafe regions are displayed in black stripes.

B. Robot Control Problem842

In this section we compare the performance of our algorithm843

with other algorithms in a robotics application. Fig. 3 shows the844

mission environment, which is a 50 × 50 grid. We model the845

motion of the robot in the environment as the following MDP846

M:847
� State space. Each state x ∈ X corresponds to a region848

in the mission environment and can be represented by a849

coordinate (i, j), where i is the row number and j is the850

column number.851
� Action space. The action space U = {u1 , u2 , u3 , u4} cor-852

responds to four control primitives (actions): “North,”853

“East,” “South,” and “West,” which represent the direc-854

tions in which the robot intends to move. Depending on855

the location of a region, some of these actions may not856

be enabled, for example, in the lower-left corner, only857

actions “North” and “East” are enabled. For each state x, 858

let Ue(x) denote the enabled actions in this state. 859
� Transitional model. A control action does not necessarily 860

lead the robot to the intended direction because the out- 861

come is subject to noise in actuation and possible surface 862

roughness in the environment. In this problem, a robot 863

can only move to the adjacent state in one step. For each 864

enabled control, the robot moves to the intended direction 865

with probability 0.7 and moves to other allowed directions 866

with equal probabilities. 867
� Initial state. The robot starts from state x0 , which is 868

labeled as ‘x’ in Fig. 3. 869
� Reward function. There are some unsafe regions XU , 870

which should be avoided, in the mission environment. 871

There are also some goal states XG that should be visited 872

as often as possible. The unsafe and goal states are dis- 873

played as black stripes and green solid colors in Fig. 3, 874

respectively. The objective is to find an optimal policy that 875

maximizes the expected average reward with an one-step 876

reward function defined by 877

g(x, u) =

⎧
⎪⎨

⎪⎩

1, ifx ∈ XG,

−1, ifx ∈ XU ,

0, otherwise.

This problem is the foundation of many complex robot motion 878

control problems in which MDPs are defined in more complex 879

ways, i.e., using temporal logic [15]–[17]. 880

In this problem, we consider two state features that represent 881

the safety and affinity of the state, respectively. For each pair 882

of states xi ,xj ∈ X, we define d(xi ,xj ) to be the minimum 883

number of transitions from xi to xj . We say xj ∈ N (xi)—a 884

neighborhood of xi—if and only if d(xi ,xj ) ≤ rn , for some 885

fixed integer rn given a priori. For each state x ∈ X, the safety 886

score is defined as the ratio of the safe neighboring states over 887

all neighboring states of x. Namely, 888

safety(x) =

∑
y∈N (x) Is(y)

|N (x)| , (50)

where Is(y) is an indicator function such that Is(y) = 1 if and 889

only if y ∈ X \ XU and Is(y) = 0 otherwise. A higher safety 890

score for the current state of the robot means it is less likely for 891

space

the
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Fig. 4. Comparison of our algorithm with LSTD and natural actor-critic
algorithms.

the robot to reach an unsafe region in the future. We define the892

affinity score of a state x ∈ X as893

affinity(x) = − min
y∈XG

d(x,y)

which is the negative of the minimum number of transitions894

from x to any goal state. The state feature is defined to be895

fS(x) = [safety(x),affinity(x)],

and the state-action feature fSA (x, u) is calculated using (48). In896

this application, we use the following Boltzmann distribution.897

μθ(u|x) =
efSA (x,u)′θ/T

∑
u∈Ue (x) e

fSA (x,u)′θ/T , (51)

where T is the temperature. Note that the only difference of (51)898

with (49) is that (51) restricts to enabled actions.899

Again, we compare our algorithm with the LSTD-AC900

algorithm in [14] and the four algorithms in [23]. We run each901

algorithm 100 times independently and Fig. 4 shows the compar-902

ison of the average reward for the first 100,000 iterations. For all903

algorithms, the initial θ is (0, 5) and the temperature T = 5. The904

step-sizes satisfy αc = α0 ·αc
αc +k 2 / 3 and βc = β0 ·βc

βc +k . For LSTD-AC905

and our algorithm, we set α0 = 0.1, αc = 1000, β0 = 0.01 and906

βc = 1000. For BSGL1-BSGL4, we set α0 = 0.1, αc = 1000,907

β0 = 0.001 and βc = 10000. We use χmin = 30 in (32).908

Table I summarizes the convergence time and the converged909

reward for all algorithms. Among the three natural gradient-910

based algorithms, BSGL3 performs the best, but on average it is911

still slower than our method in this problem. The convergence912

rate of BSGL1 is much worse than the rest of the algorithms.913

For this problem, we did not observe numerical instability for914

BSGL2.915

For the robot control problem, the average CPU time per916

iteration is 3281 μs for our algorithm vs. 2837 μs for LSTD-917

AC, that is, about 15.7% higher. The computational overhead918

of the second-order critic in this problem is much lower than in919

the GARNET problem, which is due to the fact that the robot 920

control problem has less parameters. 921

The CPU time per iteration of both LSTD-AC and our algo- 922

rithm is larger than that of BSGL1-BSGL4, but the difference 923

is much smaller compared with the GARNET problem. Since 924

significant less iterations are needed for our algorithm, it con- 925

verges faster than all other algorithms. Specifically, the second- 926

best algorithm, BSGL3, takes on average 20.3% more time to 927

converge. 928

VIII. CONCLUSIONS AND FUTURE WORK 929

In this paper we propose a general estimate for the Hessian 930

matrix of the long-run reward in actor-critic algorithms. Based 931

on this estimate, we present a novel second-order actor-critic 932

algorithm which uses second-order critic and actor. The actor, 933

in particular, uses a direct estimate of the Hessian matrix to 934

improve the rate of convergence for ill-conditioned problems. 935

Building on the LSTD-AC algorithm in [16], [14], our algorithm 936

extends the critic to approximate the Hessian and revises the 937

actor to update the policy parameters using Newton’s method. 938

We compare our algorithm with the LSTD-AC algorithm and 939

the four algorithms in [23], three of which are based on natural 940

gradients, in two applications. The results show that our method 941

can achieve a better rate of convergence for many problems. 942

As a variant of Newton’s method, our method has similar 943

limitations. First, the cost of maintaining a Hessian estimate is 944

quadratic to the number of parameters. As a result, our algo- 945

rithm is only suitable for problems with relatively small num- 946

ber of parameters. Second, our algorithm requires the second 947

derivative of the policy function, which implies that the method 948

can not be applied if the policy function is not twice differ- 949

entiable or its second-order derivatives are hard to obtain. Our 950

algorithm is suitable for the cases where the reward is more 951

sensitive to some parameters vs. others, leading to potentially 952

ill-conditioned problems that are best handled by Newton’s 953

method. 954

One direction for future work is to use part of (9) rather than 955

all four terms, so as to achieve a better tradeoff between con- 956

vergence rate and computational cost per iteration. In addition, 957

the algorithm described in this paper is suitable for the average 958

reward problem. Since Theorem IV.2 holds for all three types 959

of rewards, similar algorithms can be derived for the discounted 960

and the total reward cases. 961
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APPENDIX A 965

PROOF OF LEMMA VI.1 966

Lemma A.1: Suppose {γk}, {ζk}, {βk} are three determin- 967

istic positive sequences that satisfy (36) for some d1 , d2 > 0. 968

Then, 969
∑

k

(max(γk , βk )/ζk )d <∞ for some d > 0.

v.s.
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Proof: Note that limk (γk/ζk ) = 0 and limk (βk/ζk ) = 0.970

Letting d > max(d1 , d2), it follows
∑

k (γk/ζk )
d <∞ and971 ∑

k (βk/ζk )
d <∞. Further,972

∑

k

(max(γk , βk )/ζk )
d =

∑

k

(max(γk/ζk , βk/ζk ))d

=
∑

k

max((γk/ζk )d , (βk/ζk )d)

≤
∑

k

(γk/ζk )d +
∑

k

(βk/ζk )d

< ∞.

The second equality is due to the function f(x) = xd being973

monotonically increasing in the range [0,∞) when d > 0.974

The first inequality follows because both {(γk/ζk )d} and975

{(βk/ζk )d} are positive sequences. �976

A. Proof of Lemma VI.1:977

Proof: Define θ̂k = (θk , rk ) to be the collection of all pa-978

rameters in (39). We can write (39) as979

sk+1 = sk + ζk (hθ̂k
(yk ) − Gθ̂k

(yk )sk ) + ζkΞksk . (52)

We have980

‖θ̂k+1 − θ̂k‖ ≤ ‖θk+1 − θk‖ + ‖rk+1 − rk‖
≤ βkFk + γkF

r
k

≤ max(βk , γk )(Fk + Fr
k ).

The last inequality is implied since βk > 0, γk > 0, Fk and981

Fr
k are nonnegative processes. Combined with Lemma A.1, we982

can see Assumptions 3.1.(1–3) in [12] are satisfied. In addition,983

Assumptions 3.1.(4–10) in [12] are satisfied due to Assump-984

tions A.(3–11). As a result, Thm. 3.2 in [12] holds and implies985

lim
k

‖Ḡ(θ̂k )sk − h̄(θ̂k )‖ = 0, w.p.1. (53)

The left hand side of (53) is equivalent to the left hand side of986

the lemma. �987

APPENDIX B988

PROOF OF THEOREM VI.6989

We first present the following lemmas. We define the norm990

‖ · ‖ of a matrix to be the norm of the column vector containing991

all of its elements.992

Lemma B.1: Under iteration (27), we have993

‖Ak+1 − Ak‖ ≤ γkF
A
k ,

‖bk+1 − bk‖ ≤ γkF
b
k ,

for some processes {FA
k } and {Fb

k } with bounded moments,994

where γk is the stepsize in (27).995

Proof: According to (27), we have996

Ak+1 − Ak

= γk

(
zk (φ

′
θk

(xk , uk ) − φ′
θk + 1

(xk+1 , uk+1)) − Ak

)
.

Similar to Lemma VI.5 and because zk has bounded moments 997

and φθ ∈ D(2) , it can be verified that Ak has bounded mo- 998

ments. This establishes the first statement of the Lemma. We 999

can prove the second statement of the Lemma for {bk} in the 1000

same way given that the one-step reward function g ∈ D(2) , first 1001

by establishing that αk has bounded moments. � 1002

Lemma B.2: Suppose f(·) is a locally Lipschitz continuous 1003

function on a domain D. Let {υk} be a sequence of ran- 1004

dom variables with bounded moments defined on D such that 1005

‖υk+1 − υk‖ ≤ γkFk for some {Fk} with bounded moments 1006

w.p.1. Then ‖f(υk+1) − f(υk )‖ ≤ γkF
f
k for some {Ff

k } with 1007

bounded moments w.p.1. 1008

Proof: Since ‖υk+1 − υk‖ ≤ γkFk , it follows ‖υk+1 − 1009

υk | <∞ w.p.1. Since {υk} has bounded moments, υk must 1010

be in a compact set w.p.1 for ∀k. Then, by Lipschitz continu- 1011

ity, ‖f(υk+1) − f(υk )‖ ≤ C‖υk+1 − υk‖ ≤ γkCFk for some 1012

constant C. The lemma can be proved by letting Ff
k = CFk . � 1013

Lemma B.3: Let υ = {A,b} be a vector consisting of all 1014

elements in an m×m matrix A and a vector b ∈ Rm . The 1015

function f(υ) = A−1b is locally Lipschitz continuous with re- 1016

spect to A and b on the domain D = {υ : det(A) ≥ ε}, where 1017

ε is a positive constant. 1018

Proof: Let Aa denote the adjoint matrix of A. The function 1019

fa(υ) = Aab is locally Lipschitz continuous as it is a polyno- 1020

mial function, so ‖fa(υ1) − fa(υ2)‖ ≤ C‖υ1 − υ2‖ for some 1021

constant C and υ1 and υ2 that belong to a compact set. Since 1022

A−1 = Aa/det(A) and for υ1 = {A1 ,b1}, υ2 = {A2 ,b2}, 1023

we have 1024

‖f(υ1) − f(υ2)‖ = ‖A−1
1 b1 − A−1

2 b2‖
= ‖Aa

1b1/det(A1) − Aa
2b2/det(A2)‖

≤ 1
ε
‖Aa

1b1 − Aa
2b2‖

=
1
ε
‖fa(υ1) − fa(υ2)‖

≤ C

ε
‖υ1 − υ2‖.

So f(υ) = A−1b must be locally Lipschitz continuous on the 1025

domain D = {υ : det(A) > ε}. � 1026

A. Proof of Theorem VI.6 1027

Proof: Recall that V(A) is the column vector stacking all 1028

columns in a matrix A. Let υk = (V(Ak ),bk ) where Ak and 1029

bk are the iterates in (27). It follows 1030

‖υk+1 − υk‖ = ‖Ak+1 − Ak‖ + ‖bk+1 − bk‖
≤ γk (FA

k + Fb
k ).

The last equality is due to Lemma B.1 and FA
k + Fb

k has 1031

bounded moments. Define the function f(υk ) = A−1
k bk , which 1032

implies rk = f(xk ) = A−1
k bk when det(Ak ) ≥ ε by (28). The 1033

lemma can be easily proved by combining Lemma B.3 and 1034

Lemma B.2. � 1035
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An Actor-Critic Algorithm With Second-Order
Actor and Critic

1

2

Jing Wang and Ioannis Ch. Paschalidis, Fellow, IEEE3

Abstract—Actor-critic algorithms solve dynamic decision4
making problems by optimizing a performance metric of5
interest over a user-specified parametric class of policies.6
They employ a combination of an actor, making policy7
improvement steps, and a critic, computing policy improve-8
ment directions. Many existing algorithms use a steepest9
ascent method to improve the policy, which is known to suf-10
fer from slow convergence for ill-conditioned problems. In11
this paper, we first develop an estimate of the (Hessian) ma-12
trix containing the second derivatives of the performance13
metric with respect to policy parameters. Using this esti-14
mate, we introduce a new second-order policy improvement15
method and couple it with a critic using a second-order16
learning method. We establish almost sure convergence of17
the new method to a neighborhood of a policy parameter18
stationary point. We compare the new algorithm with some19
existing algorithms in two application and demonstrate20
that it leads to significantly faster convergence.21

Index Terms—Actor-critic algorithms, Markov decision22
processes, Newton’s method, robotics.23

I. INTRODUCTION24

MARKOV Decision Processes (MDPs) provide a general25

framework for sequential decision making problems. Al-26

though MDPs can be solved using dynamic programming, the27

well-known “curse of dimensionality” becomes an impediment28

for larger instances [1]. In addition, dynamic programming in29

a standard implementation requires explicit transition probabil-30

ities among states under each control, which are not available31

for many applications. To address these limitations, a number32

of approximate dynamic programming techniques have been33

developed, including reinforcement learning methods [2], a va-34

riety of techniques involving value function and policy approx-35

imations (neuro-dynamic programming [3]) and actor-critic36

algorithms [4].37
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This paper focuses on the latter actor-critic algorithms. They 38

optimize a parametric user-designed Randomized Stationary 39

Policy (RSP) using policy gradient estimation. RSPs are poli- 40

cies parameterized by a parsimonious set of parameters. To 41

optimize the RSPs with respect to these parameters, actor-critic 42

algorithms estimate policy gradients using learning methods 43

that are much more efficient than computing a cost-to-go func- 44

tion over the entire state-action space. Many different vari- 45

ants of actor-critic algorithms have been proposed and shown 46

to be effective for many applications such as robotics [5], 47

biology [6], navigation [7], and optimal bidding for electricity 48

generation [8]. 49

In an attractive type of an actor-critic algorithm introduced in 50

[4], a critic is used to estimate the policy gradient from observa- 51

tions on a single sample path and an actor is using this gradient to 52

update the policy at a slower time-scale [4]. The estimate of 53

the critic tracks the slowly-varying policy asymptotically, using 54

first-order variants of the Temporal Difference (TD) learning 55

algorithms (TD(1) and TD(λ)). However, it has been shown that 56

second-order learning methods—Least Squares TD (LSTD)— 57

are superior in terms of rate of convergence (see [9]–[14]). 58

LSTD was first proposed for discounted cost problems in [11] 59

and was shown to have the optimal rate of convergence in [12]. 60

In [14], LSTD is used in the critic of an actor-critic algorithm, 61

resulting in the LSTD Actor-Critic algorithm (LSTD-AC). 62

Later, this algorithm was applied to applications of robot 63

motion control with temporal specifications [15]–[17]. Despite 64

faster convergence than TD-based methods, LSTD-AC exhibits 65

slow convergence for ill-conditioned problems in which the 66

performance metric is more sensitive to some parameters in the 67

RSPs than others. The reason is that it uses a first order actor 68

with an “unscaled” gradient, commonly known as steepest 69

ascent, to update the policy. This often leads to a “zig-zagging” 70

behavior in order to converge to a stationary point. 71

Several algorithms have been introduced which use a second- 72

order method in the actor. The “natural” gradient method was 73

originally proposed for stochastic learning [18], [19]. [20] pro- 74

posed a different estimate of the natural gradient but its accuracy 75

can be influenced by the choice of basis functions; an episodic 76

algorithm was then proposed to guarantee the unbiasedness of 77

the estimate. These methods use the inverse of the Fisher infor- 78

mation matrix to scale the gradient. [21] suggested several incre- 79

mental methods using the natural policy gradient. [22] presented 80

an online natural actor-critic algorithm using a natural gradient 81

and applied it to a road traffic optimization problem. Based on 82

[20], [23] proposes three fully incremental natural actor-critic 83

0018-9286 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.
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algorithms. It also describes a method that is based on a84

“vanilla” gradient and provides extensive empirical comparison85

of all algorithms in test problems (so called Generic Average86

Reward Non-stationary Environment Testbed—GARNET87

problems [23]).88

Although natural gradients are very effective in stochastic89

learning, there are alternative ways to scale gradients. The90

Hessian matrix of the performance metric with respect to the pa-91

rameters is commonly used to improve the rate of convergence.92

[24] proposes an estimate of the Hessian matrix for a discounted93

reward problem using a sample path of an MDP. Although the94

relationship between the Fisher information matrix and the Hes-95

sian matrix has been briefly discussed in [19] and [25], it is still96

not fully clear how they are related in the actor-critic framework97

and why natural actor-critic algorithms work well in practice.98

In this work, we develop a more general estimate of the99

Hessian matrix for actor-critic algorithms. In Section V-C, we100

demonstrate that our Hessian estimate degenerates to the Fisher101

information matrix used in natural actor-critic algorithms if we102

assume no knowledge of the state-action value function and ig-103

nore second derivatives with respect to the parameter vector. In104

this light, natural actor-critic algorithms can be seen as equiv-105

alent to quasi-Newton methods that assume no knowledge of106

the state-action value function when approximating the Hessian107

matrix. In fact, [12] proposes a quasi-Newton actor-critic108

algorithm that is very similar to the methods in [20].109

This paper proposes a method that uses LSTD-based crit-110

ics to provide estimates of both the gradient and the Hessian111

and utilizes the Hessian estimate in the actor to update policy112

parameters.113

We establish almost sure convergence in the neighborhood114

of a stationary point (with respect to policy parameters) of the115

performance metric. We remark that a subset of the results ap-116

peared in a preliminary conference paper in [1]. The present117

paper contains all proofs concerning the Hessian estimate, the118

convergence analysis which was absent from [1], and a much119

more extensive numerical evaluation of our method both in120

GARNET problems and in an application from robotics.121

The remainder of the paper is organized as follows: Section II122

provides background on MDPs and establishes some of our no-123

tation. Section III presents the estimation of the policy gradient.124

Section IV develops the estimate of the policy Hessian, which125

is the foundation of the new algorithm. Section V describes126

our method and Section VI proves its convergence. Section VII127

presents two case studies.128

Notation: Bold letters are used to denote vectors and matrices;129

typically vectors are lower case and matrices upper case. Vectors130

are column vectors, unless explicitly stated otherwise. Prime de-131

notes transpose. For the column vector x ∈ Rn we write x =132

(x1 , . . . , xn ) for economy of space, while ‖x‖ denotes the133

Euclidean norm. The expressions � 0 and � 0 denote positive-134

definiteness and positive-semi-definiteness, respectively. Vec-135

tors or matrices with all zeroes are written as 0 and the identity136

matrix as I. For any set S , |S | denotes its cardinality. θ denotes137

the parameters in parameterized policies. If not explicitly speci-138

fied, ∇ and ∇2 denote the gradient and Hessian w.r.t. θ. To sim-139

plify the notation, a lot of equations in this paper are represented140

using functional notation and the domain of these functions is 141

assumed to be X × U , where X and U are the state and the 142

action space, respectively, of the MDP. Vector-valued functions 143

are denoted using bold letters while scalar-valued functions are 144

denoted using normal letters. 0 and 1 are functions that assign 145

the value 0 and 1 to all state-action pairs, respectively. 146

II. MARKOV DECISION PROCESSES 147

Consider a discrete-time Markov Decision Process (MDP) 148

with a finite state space X and an action space U . Let xk ∈ X 149

and uk ∈ U be the state of the system and the action taken 150

at time k, respectively. Let g(xk , uk ) be the one-step reward 151

of applying action uk when the system is at state xk . We will 152

use x0 to denote the initial state and p(xk+1 |xk , uk ) for the 153

state transition probabilities, which are typically not explicitly 154

known. We assume that {xk} and {xk , uk} are ergodic Markov 155

chains [12]. 156

This paper considers policies that belong to a parameterized 157

family of RSPs {μθ : θ ∈ Rn}. That is, given a state x ∈ X 158

and an n-dimensional parameter vector θ, the policy applies 159

action u ∈ U with probability μθ(u|x). Given a fixed policy 160

μθ(u|x), the history of g(xk , uk ) can be represented by a ran- 161

dom process. Let Eθ{·} be the expectation with respect to this 162

random process; the long-term average reward for a policy μθ 163

is ᾱ(θ) = Eθ{limT→∞ 1
T

∑T −1
k=0 [g(xk , uk )]}. 164

In average reward MDP optimization problems, the perfor- 165

mance metric is the long-term average reward ᾱ(θ) and the 166

objective is to optimize ᾱ(θ). Similar problems can be defined 167

by using discounted reward or total reward as performance met- 168

rics [12]. Note that the discounted reward and the total reward 169

can be treated as the average reward of an artificial MDP (See 170

Chapter 2 of [12]). Without loss of generality, this paper focuses 171

on the average reward case. Corresponding results for the other 172

cases can be obtained with modifications similar to Sec. 2.4 and 173

2.5 of [12]. 174

III. ESTIMATION OF POLICY GRADIENT 175

The state-action value function Qθ : X × U → R (some- 176

times referred to as the Q-value function) of a policy μθ is 177

defined as the expected future reward given the current state 178

x and the action u. Qθ is the unique solution of the Poisson 179

equation with parameter θ [26], [12] (written as a functional 180

relationship) 181

Qθ = g − ᾱ(θ)1 + PθQθ, (1)

where Pθ is the operator of taking expectation after one transi- 182

tion. More precisely, for any real-valued or vector-valued func- 183

tion f defined on X × U , 184

(Pθf)(x, u) =
∑

y ,ν

p(y|x, u)μθ(ν|y)f(y, ν) (2)

for all (x, u) ∈ X × U . 185

Let now 186

ψθ(x, u) = ∇ lnμθ(u|x), (3)
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whereψθ(x, u) = 0 when x, u are such thatμθ(u|x) ≡ 0 for all187

θ’s. It is assumed thatψθ(x, u) is bounded and continuously dif-188

ferentiable. Sinceμθ(u|x) is the probability of actionu at state x189

for θ,ψθ(x, u) is the gradient of the log-likelihood lnμθ(u|x).190

We write ψθ = (ψ1
θ, . . . , ψ

n
θ ) where n is the dimensionality191

of θ.192

For each θ ∈ Rn , let ηθ(x, u) be the stationary probability193

of state-action pair (x, u) in the Markov chain {xk , uk}. For194

any θ ∈ Rn , we define the inner product operator 〈·, ·〉θ of two195

real-valued or vector-valued functions Q1 , Q2 on X × U by196

〈Q1 , Q2〉θ =
∑

x,u

ηθ(x, u)Q1(x, u)Q2(x, u). (4)

A key fact underlying actor-critic algorithms is that the policy197

gradient of ᾱ(θ) can be expressed as [27], [12]198

∂ᾱ(θ)
∂θi

=
〈
Qθ, ψ

i
θ

〉
θ
, i = 1, . . . , n. (5)

IV. ESTIMATION OF THE POLICY HESSIAN199

Earlier work in actor-critic methods has used critics based200

on TD(1), TD(λ), and LSTD methods to estimate the policy201

gradient ∇ᾱ(θ) [4], [28]. Since we are interested in a Newton-202

like gradient ascent update in the actor, in this section we develop203

an estimate for the policy Hessian matrix ∇2 ᾱ(θ).204

Applying the operator ∇ on the real-valued function gθ(x, u)205

parameterized by θ, we obtain a vector-valued function, abbre-206

viated as ∇gθ , which maps (x, u) to ∇gθ(x, u). For a vector-207

valued function fθ : X × U → Rm parameterized by θ, which208

can be denoted as fθ = (f 1
θ , . . . , f

m
θ ), we define ∇fθ to be an209

n×m matrix-valued function whose ith column is ∇fiθ .210

Lemma IV.1: For any vector-valued function fθ : X × U →211

Rm , we have212

∇ (Pθfθ) = Pθ

(
∇fθ +ψθf

′
θ

)
.

Proof: For all state-action pairs (x, u) ∈ X × U , we have213

∇(Pθfθ)(x, u) = ∇
(
∑

y ,ν

p(y|x, u)μθ(ν|y)fθ(y, ν)

)

=
∑

y ,ν

p(y|x, u)∇ (μθ(ν|y)fθ(y, ν)) . (6)

In the above, μθ(ν|y)fθ(y, ν) is a function defined on X × U ,214

which is abbreviated as μθfθ. Using the chain rule and the215

definition of ψθ, we obtain216

∇ (μθfθ) = μθ∇fθ + ∇μθf
′
θ

= μθ

(
∇fθ +ψθf

′
θ

)
. (7)

The lemma can be proved by substituting (7) to (6). �217

Lemma IV.1 provides a way to interchange the Pθ and ∇218

operators. Similar to the definition of ψθ, we define219

ϕθ(x, u) = ∇2 lnμθ(u|x), (8)

where ϕθ(x, u) = 0 when x, u are such that μθ(u|x) ≡ 0 for220

all θ.ϕθ is the Hessian matrix of the log-likelihood lnμθ(u|x).221

The following theorem establishes a similar result to (5) for the 222

Hessian matrix ∇2 ᾱ(θ). 223

Theorem IV.2 (Hessian Matrix of Average Reward): Let 224

ϕijθ : X × U → R be the scalar-valued (i, j)-th component of 225

ϕθ(x, u). The second-order partial derivative of ᾱ(θ) with 226

respect to θ can be represented as: 227

∂2 ᾱ(θ)
∂θi∂θj

=
〈
Qθ, ψ

i
θψ

j
θ

〉

θ
+
〈
Qθ, ϕ

ij
θ

〉

θ

+
〈
∂Qθ

∂θi
, ψjθ

〉

θ

+
〈
∂Qθ

∂θj
, ψiθ

〉

θ

(9)

for all i, j = 1, . . . , n, where 〈·, ·〉θ is the inner product operator 228

defined in (4). 229

Proof: Applying the ∇ operator on both sides of (1) and 230

using Lemma IV.1 with fθ being the scalar function Qθ, we 231

obtain 232

∇ᾱ(θ)1 + ∇Qθ = Pθ (ψθQθ + ∇Qθ) . (10)

Defining the vector-valued function fθ = ψθQθ + ∇Qθ and 233

applying again the ∇ operator on both sides of (10), we have 234

∇(∇ᾱ(θ)1 + ∇Qθ) = ∇(Pθfθ),

which due to Lemma IV.1 implies 235

∇2 ᾱ(θ)1 + ∇2Qθ = Pθ

(
∇fθ +ψθf

′
θ

)
. (11)

Take now the inner product with 1 on both sides of (11) and 236

notice that because ηθ(x, u) is the stationary probability under 237

θ, it holds 〈1,h〉θ = 〈1, Pθh〉θ for any function h defined on 238

X × U . We have 239

∇2 ᾱ(θ) +
〈
1,∇2Qθ

〉
θ

=
〈
1,∇fθ +ψθf

′
θ

〉

θ
.

Using the definition of fθ and the fact ∇fθ = ∇(ψθQθ) + 240

∇2Qθ, we obtain 241

∇2 ᾱ(θ) +
〈
1,∇2Qθ

〉
θ

=
〈
1,∇(ψθQθ) + ∇2Qθ

〉
θ

+
〈
1, Qθψθψ

′
θ +ψθ∇Q

′
θ

〉

θ
(12)

Applying the chain rule, noticing that ∇ψθ = ϕθ, and reorga- 242

nizing the terms in (12) it follows 243

∇2 ᾱ(θ) =
〈
Qθ,ψθψ

′
θ

〉

θ
+ 〈Qθ,ϕθ〉θ

+
〈
∇Qθ,ψ

′
θ

〉

θ
+
〈
ψθ,∇Q

′
θ

〉

θ
. (13)

� 244

Corresponding results for the discounted reward and the total 245

reward cases can be derived based on the relationship between 246

these three problems we discussed earlier. Intuitively, the dis- 247

counted and total rewards can be considered as average rewards 248

in some artificial MDPs. More detailed information about con- 249

structing the artificial MDPs is available at Sec. 2.4 and Sec. 2.5 250

of [12]. 251

Theorem IV.2 states that the Hessian matrix ∇2 ᾱ(θ) can be 252

decomposed into four terms, all of which take the form of inner 253

products. The first two terms are the inner products of the state- 254

action value function Qθ with ψiθψ
j
θ and ϕijθ . Because of the 255
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similarity between the first two terms and (5), we can use similar256

techniques as in the LSTD-AC to estimate them.257

For the last two terms in (13) we need an estimate of ∇Qθ .258

Note that (10) is the counterpart of the Poisson equation (1) for259

∇Qθ , where Pθ(ψθQθ) plays the role of the one-step reward.260

However, this equation can not be directly used to estimate∇Qθ261

because it is quite hard to obtain Pθ(ψθQθ). To address this262

problem, we present the following theorem.263

Theorem IV.3: Let the function Q̃θ : X × U → Rn be the264

solution of the equation265

∇ᾱ(θ)1 + Q̃θ = ψθQθ + PθQ̃θ, (14)

and ∇Qθ : X × U → Rn be the solution of (10). Then,266

〈
∇Qθ,ψ

′
θ

〉

θ
−
〈
Q̃θ,ψ

′
θ

〉

θ
= −

〈
Qθ,ψθψ

′
θ

〉

θ
. (15)

Proof: Applying the Pθ operator on both sides of (14) and267

using the fact that Pθ1 = 1, we obtain268

∇ᾱ(θ)1 + PθQ̃θ = Pθ(ψθQθ + PθQ̃θ). (16)

Comparing (10) and (16), it follows PθQ̃θ = ∇Qθ. As a result,269

〈
∇Qθ,ψ

′
θ

〉

θ
−
〈
Q̃θ,ψ

′
θ

〉

θ
=
〈
∇Qθ − Q̃θ,ψ

′
θ

〉

θ

=
〈
PθQ̃θ − Q̃θ,ψ

′
θ

〉

θ

=
〈
−ψθQθ + ∇ᾱ(θ)1,ψ

′
θ

〉

θ

= −
〈
Qθ,ψθψ

′
θ

〉

θ
+ ∇ᾱ(θ)

〈
1,ψ

′
θ

〉

θ
, (17)

where the third equality above used (14).270

Let now πθ(·) be the stationary probability of the Markov271

chain {xk} under RSP θ. Then, ηθ(x, u) = πθ(x)μθ(u|x), and272

〈
1,ψ

′
θ

〉

θ
=
∑

x,u

ηθ(x, u)ψθ(x, u)
′

=
∑

x,u

ηθ(x, u)∇μθ(u|x)
′
/(μθ(u|x))

=
∑

x

πθ(x)
∑

u

∇μθ(u|x)
′

= 0, (18)

where in the second equality we used (3) and the last equality273

follows from the fact that
∑

u μθ(u|x) = 1 for all θ. Eq. (15)274

follows by combining (17) and (18). �275

By symmetry to Eq. (15), it also holds that276

〈
ψθ,∇Q

′
θ

〉

θ
−
〈
ψθ, Q̃

′
θ

〉

θ
= −

〈
Qθ,ψθψ

′
θ

〉

θ
. (19)

Substituting (15) and (19) into (13), we obtain a new es-277

timate of the Hessian matrix ∇2 ᾱ(θ) given in the following278

Corollary.279

Corollary IV.4: With Q̃θ being a solution of (14), the Hes- 280

sian matrix ∇2 ᾱ(θ) can be expressed as: 281

∇2 ᾱ(θ) =
〈
Qθ,ϕθ −ψθψ

′
θ

〉

θ
+
〈
Q̃θ,ψ

′
θ

〉

θ

+
〈
ψθ, Q̃

′
θ

〉

θ
. (20)

A. Function Approximation 282

We can calculate Qθ and Q̃θ by solving (1) and (14). How- 283

ever, when X × U is very large, the computational cost becomes 284

prohibitive. This problem can be addressed using function ap- 285

proximation techniques. One popular type of function approx- 286

imation is to express Qθ and each component of Q̃θ with a 287

linear combination of feature functions. We choose a set of fea- 288

ture functions φθ = (ψiθ, ϕ
ij
θ , ψ

i
θψ

j
θ; i, j = 1, . . . , n), where 289

φθ(x, u) is an N -dimensional vector for ∀x, u ∈ X × U with 290

N = (2n2 + n) and n being the dimensionality of θ. Similar to 291

other actor-critic algorithms, the basis functions φθ need to be 292

uniformly linearly independent [4], [12], which can be enforced 293

by choosing a suitable structure of policies. Some additional 294

features can be added depending on the particular application. 295

This added flexibility could be useful in a number of ways as it 296

has been discussed in [4]. 297

Similar to [12], we consider the following linear approxima- 298

tion for Qθ 299

Qr
θ(x, u) = φ

′
θ(x, u)r, r ∈ RN . (21)

Let us now view the inner product operator in (4) for real- 300

valued functions in X × U as an inner product between vectors 301

in R|X||U | and denote by ‖·‖θ the induced norm. Also denote by 302

Φθ the low-dimensional subspace spanned by φθ. If we define 303

r∗ = arg min
r∈RN

||Qr
θ −Qθ||θ, (22)

then Qr∗
θ is the projection of Qθ on Φθ . Similar to (2.2) of [4], 304

〈
Qr∗

θ , ψ
i
θ

〉
θ

=
〈
Qθ, ψ

i
θ

〉
θ
,

〈
Qr∗

θ , ϕ
ij
θ − ψiθψ

j
θ

〉

θ
=
〈
Qθ, ϕ

ij
θ − ψiθψ

j
θ

〉

θ
, (23)

for all i, j = 1, . . . , n. 305

Define the linear approximation of Q̃i
θ, the ith component of 306

Q̃θ, as 307

Q̃ti
θ (x, u) = φ

′
θ(x, u)ti , ti ∈ RN . (24)

Again, for all i, j = 1, . . . , n and 308

ti∗ = arg min
t∈RN

||Q̃ti
θ − Q̃i

θ||θ, (25)

Q̃ti ∗
θ is the projection of Q̃i

θ on Φθ . Similar to (2.2) of [4], we 309

have 310
〈
Q̃ti ∗

θ , ψjθ

〉

θ
=
〈
Q̃i

θ, ψ
j
θ

〉

θ
. (26)

Equations (23) and (26) state that the projections of Qθ and 311

Q̃θ on the low-dimensional space Φθ are sufficient for estimat- 312

ing (20). This reduces the computational cost for obtaining Qθ 313

and Q̃θ since we only have to compute the relative parsimo- 314

nious vectors r∗ and ti∗, i = 1, . . . , n, while it does not alter the 315
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inner products needed to compute the gradient ∇ᾱ(θ) (cf. (5))316

and the Hessian ∇2 ᾱ(θ) (cf. (20)).317

V. A SECOND-ORDER ACTOR-CRITIC ALGORITHM318

A. Critic Step319

We use the Least Squares Temporal Difference (LSTD) (see,320

e.g., [14]) with parameter λ to estimate r∗ and ti∗, i = 1 . . . , n,321

defined in (22) and (25), respectively. Recall that xk and322

uk denote the state and the action of the system at time k,323

respectively. Let αk denote an estimate of the average re-324

ward at time k. zk ∈ RN denotes Sutton’s eligibility trace325

and Ak ∈ RN×N a sample estimate of the matrix formed by326

zk (φ
′
θk

(xk , uk ) − φ′
θk

(xk+1 , uk+1)), which can be viewed as327

a sample observation of the scaled difference of the features328

between time k and time k + 1. bk ∈ RN refers to a statisti-329

cal estimate of the single period relative reward with eligibility330

trace zk . Let also use the initial values: A0 is an identity matrix,331

α0 is zero, and b0 and z0 are column vectors with all zeros. To332

estimate r∗, we use the following Q-critic update333

αk+1 = αk + γk (g(xk , uk ) − αk ), (27)

zk+1 = λzk + φθk
(xk , uk ),

Ak+1 = Ak + γk (zkw
′
k − Ak ),

bk+1 = bk + γk [(g(xk , uk ) − αk )zk − bk ],

where wk = φθk (xk , uk ) − φθk
(xk+1 , uk+1) and γk is a step-334

size. Let rk be the estimate of r∗ at time k; we set335

rk+1 =

{
A−1
k+1bk+1 , if det(Ak+1) ≥ ε,

rk , otherwise,
(28)

where ε is a small positive constant used to judge whether Ak+1336

is “ill-conditioned” or not. Ak should be invertible when k is337

large enough [29], [30]. Our Q-critic (27) is the same with338

the critic update of the LSTD-AC algorithm in [14] and (28)339

estimates the same r∗. In addition, we add another critic, named340

as Q̃-critic, to estimate ti∗,∀i.341

Let now vi0 , i = 1, . . . , n, be a column vector with all zeros.342

Let also ηi0 , i = 1, . . . , n, be a scalar set to zero. Notice the343

relationship between Eq. (1) for theQ-function and Eq. (14) for344

the Q̃-function. To estimate ti∗, i = 1, . . . , n, defined in (25),345

we use the following LSTD Q̃-critic update346

ηik+1 = ηik + ζk (qik − ηik ), i = 1, . . . , n, (29)

vik+1 = vik + ζk [(qik − ηik )zk − vik ], i = 1, . . . , n,

where qik = Γ(rk )r
′
kφθk

(xk , uk )ψiθk
(xk , uk ) is an estimate of347

the ith component ofψθQθ which plays the role of the one-step348

reward in (14). ζk is the stepsize of the Q̃-critic and Γ(rk ) is a349

function that restricts the influence of the error in the estimate350

rk . Let tik be the estimate of ti∗ at time k. Similar to theQ-critic,351

we set352

tik+1 =

{
A−1
k+1v

i
k+1 , if det(Ak+1) ≥ ε,

tik , otherwise,
(30)

for i = 1, . . . , n. Note that the Sherman-Morrison update of a 353

matrix inverse [22] and the matrix determinant lemma [31] can 354

be applied to reduce the computational cost of calculating A−1
k+1 355

and det(Ak+1) in (28) and (30). 356

B. Actor Step 357

LetQr
θ(x, u) = Γ(r)r′φθ(x, u) and Q̃ti

θ = Γ(ti)ti
′
φθ(x, u) 358

be our estimates for Qθ and Q̃i
θ given r and ti , i = 1, . . . , n. 359

As mentioned above, the function Γ(·) restricts the influence 360

of the error in r and ti , respectively (cf. (21) and (24)). For 361

convenience of notation, let T = (t1 , . . . , tn ) and denote by 362

Q̃T
θ = (Q̃t1

θ , . . . , Q̃
tn
θ ) a vector-valued function mapping X × 363

U onto Rn with ith element equal to Q̃ti
θ . Motivated by (20) 364

and using just a single sample to estimate the expectation (in 365

a standard stochastic approximation fashion), we also define 366

Ûθ,r,T to be ann× nmatrix-valued function defined on X × U 367

and parameterized by (θ, r,T) as follows 368

Ûθ,r,T = Qr
θ(ϕθ −ψθψ

′
θ) + Q̃T

θ ψ
′
θ +ψθ(Q̃T

θ )
′
. (31)

Let Hk be the estimate of −∇2 ᾱ(θ) at time k with initial 369

condition H0 = I. The update rule for Hk is: 370

Hk+1 =

{
Hk + Uk , if Uk � 0,

Hk , otherwise,
(32)

where Uk = −Ûθk ,rk ,Tk
(xk , uk ). Note that Hk � 0 because 371

it is updated only when Uk � 0. Let χk be the number of times 372

the top branch in (32) is executed by iteration k and define 373

Ĥk =

{
I, if χk < χmin ,

Hk , otherwise,
(33)

which will be used to avoid a noisy estimate in the initial updates. 374

The actor update takes the form: 375

θk+1 = θk + βkΓ(rk )r
′
kφθk (xk , uk )Ĥ

−1
k ψθk

(xk , uk ), (34)

where βk is a stepsize. 376

In the update (32), we make sure that our scaling matrix is 377

always positive definite. Notice that Hk is the estimate of the 378

negative Hessian matrix because we are dealing with a maxi- 379

mization problem. In particular, the Hessian matrix will gener- 380

ally be negative definite in the vicinity of a local maximum and 381

we expect that the upper branch of the update (32) will be used 382

as we approach such a point. The iteration (34) takes a scaled 383

gradient ascent step, with the scaling matrix being positive 384

definite. 385

The sequences {γk} and {ζk} correspond to the stepsizes 386

used by the critics, while βk and Γ(rk ) control the stepsize for 387

the actor. The function Γ(rk ) is selected such that for some 388

positive constants C1 < C2 : 389

‖r‖Γ(r) ∈ [C1 , C2 ], ∀r ∈ RN , (35)

‖Γ(r) − Γ(r̂)‖ ≤ C2‖r − r̂‖
1 + ‖r‖ + ‖r̂‖ , ∀r, r̂ ∈ RN .

An example that satisfies these requirements is Γ(r) = 390

min(1,D/‖r‖) for some positive constant D. 391
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Fig. 1. Relationships between the critics and the actor.

We say a stepsize sequence {fk} is Square Summable but Not392

Summable (SSNS) if fk > 0,
∑∞

k=0 f
2
k <∞ and

∑∞
k=0 fk =393

∞. For the algorithm to converge, {ζk}, {γk}, and {βk} should394

be SSNS and satisfy395

∑

k

(βk/γk )
d1 <∞,

∑

k

(γk/ζk )
d2 <∞, (36)

for some d1 , d2 > 0.396

The relationships between the two critics and the actor are397

shown in Fig. 1. TheQ-critic and the Q̃-critic generate estimates398

rk and Tk = (t1
k , . . . , t

n
k ) which yield linear approximations of399

Qθ and Q̃θ, respectively. Both critics need to converge faster400

than the actor in order to track the changes in θ. Moreover,401

because the observed derivative qik used in the Q̃-critic depends402

on rk , the Q̃-critic is updated faster than the Q-critic so that it403

can track changes in rk . We next present a result establishing a404

relationship between the stepsize sequences.405

Proposition V.1: Suppose {ζk} and {βk} are two SSNS step-406

size sequences that satisfy407

∑

k

(βk/ζk )
d <∞, for some d > 0. (37)

Let γk = (ζkβk )1/2 . Then, {γk} is also SSNS and {γk} , {βk} ,408

{ζk} satisfy (36).409

Proof: Due to the assumption in (37), limk→∞(βk/ζk ) = 0,410

which implies that there exists a positive constant K such that411

for ∀k > K, βk ≤ ζk . Since {βk} is SSNS, it follows412

∑

k

γk =
∑

k

(ζkβk )1/2 ≥ C1 +
∞∑

k=K+1

βk = ∞,

where C1 =
∑K

k=0 γk . Furthermore, since {ζk} is SSNS413

∑

k

γ2
k =

∑

k

ζkβk ≤ C2 +
∞∑

k=K+1

ζ2
k <∞,

whereC2 =
∑K

k=0 γ
2
k . Finally, letting d1 = d2 = 2d and due to414

(37) we have415

∑

k

(βk/γk )d1 ‘ =
∑

k

(γk/ζk )d2 =
∑

k

(βk/ζk )d <∞.

�416

Proposition V.1 simplifies the selection of stepsizes. We just417

need to select βk and ζk first and let γk = (ζkβk )1/2 . An exam-418

ple of {ζk}, {γk}, and {βk} that are SSNS and satisfy (36)419

is: ζk = 1/k, βk = c/(k ln k), where k > 1 and c > 0, and 420

γk = (ζkβk )1/2 = (1/k)
√
c/ ln k. 421

C. Relationship With Natural Actor-Critic Algorithms 422

In our approach, we use the Hessian matrix to scale the gra- 423

dient in order to improve the convergence rate. A similar idea 424

is to use the Fisher information matrix to scale the gradient. It 425

was first proposed by [19] and several related algorithms fol- 426

lowed [20], [23], [21]. This section discusses the relationship 427

of the Fisher information matrix with the Hessian matrix for 428

actor-critic algorithms. 429

Suppose ηθ(x, u) is the stationary state-action distribution 430

when the RSP parameter equals θ. [20] states that the Fisher 431

information matrix is equal to 432

Fθ =
∑

x,u

ηθ(x, u)∇ lnμθ(u|x)∇ lnμθ(u|x)
′
, (38)

which can also be written as
〈
1,ψθψ

′
θ

〉

θ
, where ψθ = 433

∇ lnμθ(u|x) (cf. (3)). 434

Let us now compare this expression with the true Hessian 435

matrix (cf. (9)). If we set Qθ ≡ 1, hence, ∇Qθ ≡ 0, and ignore 436

second derivatives with respect to θ, then the Hessian matrix 437

degenerates to the Fisher information matrix in (38). In this 438

sense, natural actor-critic algorithms are quasi-Newton methods 439

that approximate the Hessian without utilizing the state-action 440

value function Qθ. In contrast, our method takes advantage of 441

the state-action value function. 442

VI. CONVERGENCE 443

A. Linear Stochastic Approximation Driven by a Slowly 444

Varying Markov Chain 445

Our Q-critic in (27) has the same form as in [14] so its 446

convergence can be proved in a similar way. In the Q̃-critic 447

(29), the increment qik depends on the parameter vector rk . 448

To facilitate the convergence proof of the Q̃-critic, this sec- 449

tion generalizes the theory of linear stochastic approximation 450

driven by a slowly varying Markov chain developed in [12] 451

to the case where the objective is affected by some additional 452

parameters r. 453

Let {yk} be a finite Markov chain whose transition probabili- 454

ties depend on a parameter θ ∈ Rn . Let {hθ,r(·) : θ ∈ Rn , r ∈ 455

RN } be a family ofm-vector-valued functions parameterized by 456

θ ∈ Rn and r ∈ RN . Let Ξk be some m×m matrix. Consider 457

the following iteration to update a vector s ∈ Rm : 458

sk+1 = sk + ζk (hθk ,rk (yk ) − Gθk
(yk )sk ) + ζkΞksk . (39)

In the above iteration, sk ∈ Rm is the approximation vector. 459

hθ,r(·) and Gθ(·) are m-vector-valued and m×m-matrix- 460

valued functions parameterized by θ, r and θ, respectively. Let 461

E [·] denote expectation. In order to establish the convergence 462

results, we make the following assumptions. 463

Assumption A: 464

1) The sequence {ζk} is deterministic, non-increasing and 465

SSNS. 466
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2) The random sequence {θk} satisfies ‖θk+1 − θk‖ ≤467

βkFk for some process {Fk} with bounded moments,468

where {βk} is a positive deterministic sequence such469

that
∑

k (βk/ζk )
d <∞ for some d > 0.470

3) Ξk is an m×m-matrix valued martingale difference471

with bounded moments.472

4) The (random) sequence {rk} satisfies ‖rk+1 − rk‖ ≤473

γkF
r
k for some nonnegative process {Fr

k }with bounded474

moments, where {γk} is a positive sequence such that475 ∑
k (γk/ζk )

d <∞ for some d > 0.476

5) rk converges to r̄(θk ) when k → ∞, namely,477

limk→∞ ‖rk − r̄(θk )‖ = 0, w.p.1.478

6) (Existence of solution to the Poisson Equation.) For each479

θ and r, there exists h̄(θ, r) ∈ Rm , Ḡ(θ) ∈ Rm×m ,480

and corresponding m-vector and m×m-matrix func-481

tion ĥθ,r(·), Ĝθ(·) that satisfy the Poisson equation.482

That is, for each y,483

ĥθ,r(y) = hθ,r(y) − h̄(θ, r) + (Pθĥθ,r)(y),

Ĝθ(y) = Gθ(y) − Ḡ(θ) + (PθĜθ)(y).

7) (Boundedness.) For all θ and r, we have484

max(‖h̄(θ, r)‖, ‖Ḡ(θ)‖) ≤ C for some constant C.485

8) (Boundedness in expectation.) For any d > 0, there ex-486

ists Cd > 0 such that supk E[‖fθk
(yk )‖d ] ≤ Cd and487

supk E[‖gθk ,rk (yk )‖d ] ≤ Cd, where fθ(·) represents488

Gθ(·) and Ĝθ(·), and gθ,r(·) represents hθ,r(·) and489

ĥθ,r(·).490

9) (Lipschitz continuity.) For some constant C > 0, and491

for all θ, θ̄ ∈ Rn , ‖Ḡ(θ) − Ḡ(θ̄)‖ ≤ C‖θ − θ̄‖. For492

all θ, θ̄ ∈ Rn and r, r̄ ∈ RN , ‖h̄(θ, r) − h̄(θ̄, r̄)‖ ≤493

C(‖θ − θ̄‖ + ‖r − r̄‖).494

10) (Lipschitz continuity in expectation.) There exists a495

positive measurable function C(·) such that for ev-496

ery d > 0, supk E
[
C(yk )d

]
<∞. In addition, for all497

θ, θ̄ ∈ Rn , ‖fθ(y) − fθ̄(y)‖ ≤ C(y)‖θ − θ̄‖, where498

fθ(·) represents Gθ(·) and Ĝθ(·). For all θ, θ̄ ∈499

Rn and r, r̄ ∈ RN , ‖gθ,r(y) − gθ̄,r̄(y)‖ ≤ C(y)(‖θ −500

θ̄‖ + ‖r − r̄‖), where gθ,r(·) represents hθ,r(·) and501

ĥθ,r(·).502

11) There exists a > 0 such that for all s ∈ Rm and θ ∈ Rn ,503

s
′
Ḡ (θ) s ≥ a‖s‖2 .504

Lemma VI.1: If Assumptions A.(1–11) are satisfied, then505

limk→∞ ‖Ḡ(θk )sk − h̄(θk , rk )‖ = 0 w.p.1.506

Proof: See Appendix A. �507

Theorem VI.2: If Assumptions A.(1–11) are satisfied, then508

limk→∞ ‖Ḡ (θk ) sk − h̄ (θk , r̄(θk )) ‖ = 0 w.p.1.509

Proof: We have510

‖Ḡ(θk )sk − h̄(θk , r̄(θk ))‖
≤ ‖Ḡ(θk )sk − h̄(θk , rk )‖ + ‖h̄(θk , rk ) − h̄(θk , r̄(θk ))‖.

Due to Assumption A.(9), we have511

lim
k→∞

‖h̄ (θk , rk ) − h̄ (θk , r̄(θk )) ‖ ≤ C lim
k→∞

‖rk − r̄(θk )‖,

where C is a constant. Combining the above, we have 512

0 ≤ lim
k→∞

‖Ḡ(θk )sk − h̄(θk , r̄(θk ))‖

≤ 0 + lim
k→∞

‖h̄(θk , rk ) − h̄(θk , r̄(θk ))‖

≤ 0 + C lim
k→∞

‖rk − r̄(θk )‖
= 0, w.p.1,

where the second inequality follows from Lemma VI.1 and 513

the equality is due to Assumption A.(5). We conclude that 514

limk→∞ ‖Ḡ(θk )sk − h̄ (θk , r̄(θk )) ‖ = 0, w.p.1. 515

B. Critic Convergence 516

In this section, we will use the results in Section VI-A to prove 517

the convergence of the Q-critic and the Q̃-critic presented in 518

Section V-A. Before presenting the convergence results, we first 519

state the following assumptions and definitions. 520

Assumption B: There exists a function L̃ : X → [1,∞) and 521

constants 0 ≤ ρ < 1, b > 0 such that for each θ ∈ Rn , 522

Eθ,x [L̃(x1)] ≤ ρL̃(x) + bIx∗(x), ∀x ∈ X, (40)

where Eθ,x [·] denotes expectation under θ with initial state x, 523

Ix∗(·) is the indicator function for the initial state x∗ being equal 524

to the argument of the function, and x1 is the (random) state of 525

the MDP after one transition from the initial state. 526

The assumption above is identical to [12, Assumption 2.5]. 527

We call a function satisfying the inequality (40) a stochastic 528

Lyapunov function. Let L : X × U → [1,∞) be a function that 529

satisfies the following assumption. 530

Assumption C: For each d > 0 there is Kd > 0 such that 531

Eθ,x [L (x, U0)
d ] ≤ KdL̃(x), ∀x ∈ X,θ ∈ Rn ,

where U0 is the random variable of the action at state x. 532

Note that if any function is upper bounded by a function L 533

as described in Assumption C, then all its steady-state moments 534

are finite. 535

Lemma VI.3: If two functions Lf : X × U → [1,∞) and 536

Lg : X × U → [1,∞) satisfy Assumption C, then so does 537

LfLg . 538

Proof: For any two random variables A and B, E[AB] ≤ 539

(1/2)(E[A2 ] + E[B2 ]). As a result, we have 540

Eθ,x
[
Lf (x, U0)dLg (x, U0)d

]

≤ 1
2
Eθ,x

[
Lf (x, U0)2d]+

1
2
Eθ,x

[
Lg (x, U0)2d]

≤ 1
2
(Kf

2d +Kg
2d)L̃ (x) ,

where Kf
2d and Kg

2d are the bounding constants of f and g 541

appearing in Assumption C. � 542

Definition 1: We define D(2) to be the family of all functions 543

fθ(x, u) that satisfy: for all x ∈ X and u ∈ U , there exists a 544
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constant K > 0 such that545

‖fθ(x, u)‖ ≤ KL(x, u), ∀θ ∈ Rn , (41)

‖fθ(x, u) − fθ̄(x, u)‖ ≤ K‖θ − θ̄‖L(x, u), ∀θ, θ̄ ∈ Rn ,
(42)

where the bounding function L satisfies Assumption C.546

Lemma VI.4: If fθ,gθ ∈ D(2) , then fθ + gθ ∈ D(2) and547

fθgθ ∈ D(2) .548

Proof: The proof for fθ + gθ is immediate; we focus on549

fθgθ. Inequality (41) can be proved using Lemma 4.3(f) of [4].550

To prove inequality (42),551

‖fθgθ − fθ̄gθ̄‖ = ‖fθgθ + fθgθ̄ − fθgθ̄ − fθ̄gθ̄‖
≤ ‖fθ‖‖gθ − gθ̄‖ + ‖gθ̄‖‖fθ − fθ̄‖
≤ 2KfKgLf Lg‖θ − θ̄‖,

where Kf and Lf are the bounding constant and the bounding552

function for f in (41) and (42), while Kg and Lg are the cor-553

responding quantities for g. According to Lemma VI.3, LfLg554

also satisfies Assumption C, which completes the proof. �555

We assume φθ ∈ D(2) , which556

is the same with Assumption 4.1557

of [12]. This assumption ensures that the feature vector558

φθ =
(
φ1

θ, . . . , φ
N
θ

)
, as a function of the policy parameter θ,559

is “well behaved.” Given our feature vector definition, notice560

that this assumption requires that the RSP function family μθ561

is twice continuously differentiable for all θ with bounded first562

and second derivatives that belong to D(2) . We also assume that563

the one-step reward function g ∈ D(2) .564

The critic consists of two parts: a Q-critic that estimates Qθ565

(cf. (27), (28)) and a Q̃-critic that estimates Q̃θ (cf. (29), (30)).566

The Q-critic is exactly the same with the LSTD-AC algorithm567

[14], whose convergence has already been proved in [14] under568

the assumptions imposed. For the Q̃-critic, denote by V(A) a569

column vector stacking all columns in a matrix A. The Q̃-critic570

can be written as in (39) if we let571

sk =
[
Mη1

k · · ·Mηnk (v1
k )

′ · · · (vnk )
′
]′
, (43)

hθ,r(y) =
[
MΓ(r)r

′
φθ(x, u)ψθ(x, u)

Γ(r)r
′
φθ(x, u)V(zψ

′
θ(x, u))

]

,

Gθ(y) =
[

I 0
diag(z, . . . , z)/M I

]

Ξk = 0,

where diag(z, . . . , z) denotes an nN × n block diagonal matrix572

with every diagonal element being equal to z, y = (x, u, z) , M573

is an arbitrary (large) positive constant whose role is to facilitate574

the convergence proof, and at any iteration k of (39) rk iterates575

as in (28). The stochastic process {zk} is the eligibility trace576

iterating as in (27).577

To prove the convergence of the Q̃-critic, we just need578

to verify Assumptions A.(1–11). It is easy to verify that579

zk =
∑k−1

l=0 λk−l−1φθl (xl , ul). First, we establish the following580

lemma.581

Lemma VI.5: For every d > 0, we have 582

supk E[L(xk , uk )d‖zk‖d ] <∞, where L : X × U → [1,∞) 583

is a bounded function that satisfies Assumption C. 584

Proof: According to the triangle inequality, we have 585

‖zk‖d = ‖
k−1∑

l=0

λk−l−1φθl
(xl , ul)‖d

≤
k−1∑

l=0

λd(k−l−1)‖φθl (xl , ul)‖d

≤ K1

k−1∑

l=0

λd(k−l−1)L1(xl , ul)d ,

for some bounded function L1 that satisfies Assumption C and 586

some positive constant K1 , where the last inequality is due to 587

φθk
∈ D(2) . In addition, we can multiply with L(xk , uk )d and 588

take expectation on both sides of the above, which yields 589

E[L(xk , uk )d‖zk‖d ]

≤ K1

k−1∑

l=0

λd(k−l−1)E[L(xk , uk )dL1(xl , ul)d ]. (44)

Similar to the proof of Lemma VI.3, 590

E[L(xk , uk )dL1(xl , ul)d ] (45)

≤ 1
2
E[L(xk , uk )2d ] +

1
2
E[L1(xl , ul)2d ] <∞.

Combining (44) and (45), we establish that E[L(xk , uk )d‖zk‖d ] 591

is bounded. � 592

Theorem VI.6: Under iterations (27) and (28), 593

‖rk+1 − rk‖ ≤ γkF
r
k , w.p.1, (46)

for some random sequence {Fr
k } that has bounded moments, 594

where {γk} is the stepsize in (27). 595

Proof: SeeAppendix B. � 596

Using SSNS stepsizes according to (36), Assumptions A.(1) 597

and (4) will be satisfied because of Theorem VI.6. Now, ‖r‖Γ(r) 598

is bounded because of (35). According to (31), Uk has bounded 599

moments because ψθ (x, u) , φθ (x, u) , Qθ, and Q̃i
θ, ∀i, have 600

bounded moments. Hk and Ĥk should also have bounded mo- 601

ments because the update in (32) is applied only when Uk is pos- 602

itive definite. As a result, Γ(rk )r
′
kφθk

(xk , uk )Ĥkψθk
(xk , uk ) 603

should have bounded moments, thus, Assumption A.(2) holds. 604

Assumption A.(3) is trivially satisfied. In addition, because the 605

Q-critic converges, we have 606

lim
k→∞

‖rk − r̄(θk )‖ = 0, w.p.1,

which is Assumption A.(5). 607

For i = 1, . . . , n, define the function ξiθ = φθψ
i
θ. Because 608

φθ ∈ D(2) and ψθ ∈ D(2) , we obtain ξiθ ∈ D(2) according to 609

Lemma VI.4. Notice that for any fixed r and θ, the Q̃-critic (43) 610

is equivalent to the Q-critic of an artificial Markov decision 611

process with reward function giθ,r(x, u) = Γ(r)r
′
ξiθ(x, u), i = 612

1, . . . , n. As a result, the Poisson equations of Assumption A.(6) 613
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should be satisfied with appropriately defined average steady-614

state quantities h̄(θ, r) and Ḡ(θ). More specifically, similar to615

[4, Sec. 5.2], we have616

κ̄i(θ, r) =
〈
1, giθ,r

〉
θ
,

z̄(θ) = (1 − λ)−1 〈1,φθ〉θ ,

hi1(θ, r) =
∞∑

k=0

λk
〈
Pk

θ g
i
θ,r − κ̄i(θ, r)1,φθ

〉
θ
,

h̄(θ, r) = (Mκ̄1(θ, r), . . . ,Mκ̄n (θ, r),

(h1
1(θ, r) + κ̄1(θ, r)z̄(θ), . . . ,

(hn1 (θ, r) + κ̄n (θ, r)z̄(θ)),

Ḡ(θ) =
[

I 0
diag(z̄(θ), . . . , z̄(θ))/M I

]

,

where Pk
θ denotes the application of the operator Pθ k times.617

We can interpret κ̄i(θ, r) as the steady-state expectation of the618

“observed reward” function giθ,r .619

Let now h̃iθ,r(y) = Γ(r)r
′
ξiθ(x, u)z, i = 1, . . . , n. It can be620

seen that if h̃iθ,r are bounded and Lipschitz continuous in ex-621

pectation for all i = 1, . . . , n, then hθ,r should also be bounded622

and Lipschitz continuous in expectation. Recall that ξiθ ∈ D(2) .623

For i = 1, . . . , n and each d > 0,624

sup
k

E
[
‖h̃iθ,r (yk ) ‖d

]

≤ (Γ(r)‖r‖)d sup
k

E
[‖ξiθ(xk , uk )‖d‖zk‖d

]

≤ (Γ(r)‖r‖)d Kd sup
k

E
[
L(xk , uk )d‖zk‖d

]
,

for some function L that satisfies Assumption C and some posi-625

tive constant K. According to (35), Γ(r)‖r‖ is bounded. Using626

Assumption C and Lemma VI.5, it follows that h̃iθ,r satisfies627

Assumption A.(8). Using Lemma VI.5 it also follows that Gθ628

satisfies the same assumption.629

It is easy to verify that the function f(r) = Γ(r)r is Lipschitz630

continuous and suppose its Lipschitz constant is CΓ . We will631

next prove that h̃iθ,r(y) is Lipschitz continuous in expectation.632

For all θ, θ̄ ∈ Rn , r, r̄ ∈ RN , and i = 1, . . . , n, we have633

‖h̃iθ,r(y) − h̃iθ̄,r̄(y)‖
≤ ‖Γ(r)r

′
ξiθ(x, u)z − Γ(r̄)r̄

′
ξiθ̄(x, u)z‖

≤ ‖z‖Γ(r)‖r′ (
ξiθ(x, u) − ξiθ̄(x, u)

) ‖
+ ‖z‖‖ (Γ(r)r − Γ(r̄)r̄)

′
ξiθ̄(x, u)‖

≤ ‖z‖Γ(r)‖r‖‖ξiθ(x, u) − ξiθ̄(x, u)‖
+ ‖z‖‖ξiθ̄(x, u)‖CΓ‖r − r̄‖. (47)

Recall that ξiθ ∈ D(2) . Let K and L be the bounding constant634

and the bounding function for ξiθ; then635

‖h̃iθ,r(y) − h̃iθ̄,r̄(y)‖ ≤ C(y)
(‖θ − θ̄‖ + ‖r − r̄‖) ,

where C(y) = (Γ(r)‖r‖ + CΓ)KL(x, u)‖z‖ and y = (x, 636

u, z). Using the fact that Γ(r)‖r‖ is bounded and Lemma VI.5, 637

it follows that E[C(y)d ] <∞ for each d > 0. As a result, hθ,r 638

satisfies Assumption A.(10). Moreover, replicating an argument 639

from [4, Sec. 5.2] it can also be shown that Gθ satisfies the same 640

assumption. Furthermore, defining 641

ĥθ,r(y) =
∞∑

k=0

Eθ,x [hθ,r(yk ) − h̄(θ, r)|y0 = y],

Ĝθ(y) =
∞∑

k=0

Eθ,x [Gθ(yk ) − Ḡ(θ)|y0 = y],

we can use similar arguments as above to establish that these 642

functions satisfy Assumption A.(8) and (10). 643

Lemma VI.7: Let θ̂ = (θ, r). Let also D̂(2) be the counter- 644

part of D(2) for functions parameterized by θ̂. Then Pk
θ g

i
θ,r 645

belongs to D̂(2) for all nonnegative integers k. 646

Proof: A simple observation is that D(2) ⊆ D̂(2) and that 647

Lemma VI.4 still holds for D̂(2) . Namely, a product function 648

fθ̂gθ̂ ∈ D̂(2) if fθ̂ ∈ D̂(2) and gθ̂ ∈ D̂(2) . 649

Pk
θ g

i
θ,r can be written as Pk

θ g
i
θ,r = Γ(r)r

′
Pk

θ ξ
i
θ. We first 650

observe that Pk
θ ξ

i
θ ∈ D(2) according to [32, Corollary 2.4]. To 651

verify (41), we have (in functional relationships) 652

‖Pk
θ g

i
θ,r‖ ≤ Γ(r)‖r‖‖Pk

θ ξ
i
θ‖ ≤ Γ(r)‖r‖KL.

To verify (42), for θ, θ̄ ∈ Rn and r, r̄ ∈ RN , we have 653

‖Pk
θ g

i
θ,r − Pk

θ̄ g
i
θ̄,r̄‖

≤ Γ(r)‖r‖‖Pk
θ ξ

i
θ − Pk

θ̄ ξ
i
θ̄‖ + ‖Pk

θ̄ ξ
i
θ̄‖CΓ‖r − r̄‖

≤ Γ(r)‖r‖KL‖θ − θ̄‖ +KLCΓ‖r − r̄‖
≤ (Γ(r)‖r‖ + CΓ)KL

(‖θ − θ̄‖ + ‖r − r̄‖) ,
whereK andL are the bounding constant and function ofPk

θ ξ
i
θ, 654

respectively. � 655

Using the fact that giθ,r ,φθ ∈ D(2) , κ̄i(θ, r) and z̄(θ) are 656

bounded and Lipschitz continuous with respect to θ̂ due to 657

[32, Corollary 5.3]. It can be easily verified that (Pk
θ g

i
θ,r − 658

κ̄i(θ, r)1)φθ ∈ D̂(2) using Lemma VI.7 and Lemma VI.4. 659

Again, using [32, Corollary 5.3], we can obtain that h̄(θ, r) 660

is bounded and Lipschitz continuous with respect to θ̂. As a 661

result, h̄(θ, r) satisfies Assumption A.(7) and (9). Similarly, it 662

can also be shown that Ḡ(θ) satisfies the same assumptions. 663

Finally, it can also be verified that ĥθ,r(y) and Ĝθ(y) satisfy 664

the same assumptions using similar arguments. 665

The final step in verifying all parts of Assumption A is part 666

(11). That follows from [4, Lemma 5.3]. Having established all 667

parts of Assumption A, the convergence of the Q̃-critic follows. 668

C. Actor Convergence 669

The actor update defined in (34) is similar to the actor update 670

using the unscaled gradient. The difference is that the gradient 671

estimate is multiplied by a positive definite matrix. This sec- 672

tion will present the convergence results for this type of actors. 673
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Define674

Sθ(x, u) = Hθψθ(x, u)φ
′
θ(x, u),

where Hθ is a positive definite matrix for all θ. Let S̄(θ) =675

〈1,Sθ〉θ and let r̄(θ) be the limit of the critic parameter r if the676

policy parameter is held fixed to θ. Similar to [12], the actor677

update can be written as678

θk+1 = θk + βkSθ(xk , uk )rkΓ(rk )

= θk + βk S̄(θk )r̄(θk )Γ(r̄(θk ))

+βk
(
Sθk

(xk , uk ) − S̄(θk )
)
rkΓ(rk )

+βk S̄(θk ) (rkΓ(rk ) − r̄(θk )Γ(r̄(θk ))) .

Define679

f(θk ) = S̄(θk )r̄(θk ),

e(1)
k =

(
Sθk (xk , uk ) − S̄(θk )

)
rkΓ(rk ),

e(2)
k = S̄(θk ) (rkΓ(rk ) − r̄(θk )Γ(r̄(θk ))) .

Then, the actor update becomes:680

θk+1 = θk + βk

(
Γ(r̄(θk ))f(θk ) + e

(1)
k + e

(2)
k

)
.

f(θk ) is the expected actor update, while e(1)
k and e(2)

k are two681

error terms due to the fact that the update is performed on a682

sample path of the MDP. Using Taylor’s series expansion,683

ᾱ(θk+1) ≥ ᾱ(θk ) + βkΓ(r̄(θk ))∇ᾱ(θk )
′
f(θk )

+βk∇ᾱ(θk )
′
e(1)
k + βk∇ᾱ (θk )

′
e(2)
k .

Lemma VI.8: (Convergence of the noise terms). It holds:684

� ∑∞
k=0 βk∇ᾱ(θk )

′
e(1)
k converges w.p.1.685

� limk e(2)
k = 0 w.p.1.686

Proof: Let ê(1)
k =

(
ξθk

(xk , uk ) − ξ̄(θk )
)
rkΓ(rk ) and687

ê(2)
k = ξ̄(θk ) (rkΓ(rk ) − r̄(θk )Γ(r̄(θk ))) , where ξθ(x, u) =688

ψθ(x, u)φ
′
θ(x, u) and ξ̄(θ) = 〈1, ξθ〉θ = 〈ψθ,φ

′
θ〉θ . Then,689

ê(1)
k and ê(2)

k are the two error terms for the actor up-690

date using the unscaled gradient [4]. It easily follows691

that e(1)
k = Hθk

ê(1)
k and e(2)

k = Hθk
ê(2)
k . Furthermore,692

Sθk
(xk , uk ) = H−1

θk
ξθk

(xk , uk ). The lemma can be proved by693

combining these facts with [4, Lemma 6.2]. �694

Lemma VI.8 shows that e(1)
k can be averaged out and e(2)

k695

goes to zero. As a result, the two error terms are negligible and696

the update is determined by the expected direction f(θ) in the697

long run.698

Lemma VI.9: We have f(θ) = g(θ) + ε(λ,θ), where g(θ)699

is a function such that ∇ᾱ(θ)
′
g(θ) ≥ 0, and supθ |ε(λ,θ)| <700

C(1 − λ) for some constant C > 0 independent of λ.701

Proof: According to (5), ∇ᾱ(θ) = 〈ψθ, Qθ〉θ =702

〈ψθ,φ
′
θ r̄(θ)〉θ = ξ̄(θ)r̄(θ). For λ = 1, we have703

∇ᾱ(θ)
′
f(θ) = ∇ᾱ(θ)

′
S̄(θ)r̄(θ)

= r̄(θ)
′
ξ̄(θ)

′
S̄(θ)r̄(θ).

Notice that ξ̄ (θ)
′
S̄ (θ) � 0. Specifically, 704

ξ̄(θ)
′
S̄(θ) = 〈ψ′

θ,φθ〉θ
〈
Hθ,ψθφ

′
θ

〉

θ

= Hθξ̄(θ)
′
ξ̄(θ),

where Hθ � 0 and ξ̄(θ)
′
ξ̄(θ) � 0 by construction. As a result, 705

ξ̄(θ)
′
S̄(θ) � 0, which implies that ∇ᾱ(θ)

′
f(θ) ≥ 0. 706

The proof for λ < 1 follows the proof in [4]. Let us write 707

r̄λ(θ) for the steady-state expectation of rk . Following the 708

proof of [4], we have ‖r̄λ(θ) − r(θ)‖ ≤ C0(1 − λ) for some 709

positive constant C0 . Let g(θ) = S̄(θ)r̄(θ), where r̄ (θ) is 710

the steady-state expectation of rk when λ = 1. Then we can 711

still obtain ∇ᾱ(θ)
′
g(θ) ≥ 0. In addition, ‖f(θ) − g(θ)‖ = 712

‖S̄(θ)(r̄λ(θ) − r̄(θ))‖ ≤ C(1 − λ) for some C. � 713

Lemma VI.9 shows that the expected direction f(θ) is always 714

a gradient ascent direction for λ sufficiently close to 1. We arrive 715

at the following convergence result whose proof is similar to [4, 716

Thm. 6.3]. 717

Theorem VI.10 Actor Convergence: For any ε > 0, there ex- 718

ists some λ sufficiently close to 1 such that the second- 719

order Actor-Critic algorithm satisfies limk→∞ infk |∇ᾱ(θk )| < 720

ε w.p.1. That is, θk visits an arbitrary neighborhood of a sta- 721

tionary point infinitely often. 722

VII. CASE STUDY 723

A. Garnet Problem 724

This section reports empirical results from our method applied 725

to GARNET problems introduced in [23]. GARNET problems 726

do not correspond to any particular application; they are meant 727

to be generic, yet, representative of MDPs one encounters in 728

practical applications [23]. As we mentioned earlier, GARNET 729

stands for “Generic Average Reward Non-stationary Environ- 730

ment Testbed.” 731

A GARNET problem is characterized by 5 parameters and 732

can be written as GARNET(n,m, b, σ, τ). The parametersn and 733

m are the number of states and actions, respectively. For each 734

state-action pair, there are b possible next states, and each next 735

state is chosen randomly without replacement. The transition 736

probabilities to these b states are generated as follows: we divide 737

a unit-length interval into b segments by choosing b− 1 breaking 738

points according to a uniform random distribution. The lengths 739

of these segments represent the transition probabilities and they 740

are randomly assigned to the b states we have already selected. 741

The expected reward for each transition is a normally dis- 742

tributed random variable with zero mean and unit variance. The 743

actual reward is a normally distributed random variable whose 744

mean is the expected reward and whose variance is 1. 745

The parameter τ, 0 ≤ τ ≤ 1/n, determines the degree of non- 746

stationarity in the problem. If τ = 0, the GARNET problem is 747

stationary. Otherwise, if τ > 0, one of the states will be se- 748

lected with probability nτ at each time step and randomly re- 749

constructed as described above. 750

To apply the actor-critic algorithm, the key step is to de- 751

sign an RSP μθ(u|x). In this case study, we define the 752

RSP to be the Boltzmann distribution that is based on some 753
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state-action features. Good state-action features should be inter-754

pretable and could help reduce the number of parameters in the755

RSP.756

We first define the state feature fS(x) to be a binary vec-757

tor of length d, i.e., fS(x) ∈ {0, 1}d , for each state x. There758

is a parameter l specifying the number of components in the759

state feature that are equal to 1. State features are randomly760

generated and we make sure no two states have the same state761

feature.762

In [23], the state-action feature is constructed by padding ze-763

ros to state features so that the features for different actions are764

orthogonal. As a result, the dimensionality of the state-action765

feature constructed in this manner is equal to d|U |. This ap-766

proach significantly increases the feature dimensionality, espe-767

cially when the action space is very large. In this paper, we use768

the state-action feature described below. For each state x0 and769

action u, the state-action feature is:770

fSA(x0 , u) = E[fS(x1)|u] − fS(x0), (48)

where E[fS(x1)|u] =
∑

x1
p(x1 |x, u)fS(x1) is the expected771

feature at the next state after applying action u.772

With the state-action feature as in (48), the probability of773

taking action u in state x is set to774

μθ(u|x) =
efSA (x,u)′θ/T

∑
u∈U efSA (x,u)′θ/T , (49)

which is a typical Boltzmann distribution with T being the775

temperature of the distribution. With the state-action feature776

described above, we can interpret −fSA (x, u)′θ as the “en-777

ergy” and the distribution prefers actions that lead to lower778

energy.779

A common consideration in RSP design is the so-called780

exploitation-exploration tradeoff [2]. An RSP exhibits higher781

exploitation if it is more greedy, i.e., it is more likely to only782

pick the most desirable action. However, sometimes the explo-783

ration of undesirable actions is necessary because they may be784

desirable in the long run. High exploitation and low exploration785

may result in a sub-optimal solution. On the contrary, low ex-786

ploitation and high exploration may reduce the convergence rate787

of the actor-critic algorithm. Our RSP defined in (49) is flexible788

because tuning T in (49) can effectively adjust the degree of ex-789

ploration. High temperature T implies more exploration while790

low temperature T implies more exploitation.791

In this empirical study, we compare our algorithm with the792

LSTD-AC algorithm in [14], and the four algorithms in [23],793

which are henceforth referred to as BSGL1 to BSGL4, in a794

GARNET problem GARNET(50, 4, 5, 0.1, 0). BSGL1 is based795

on a “vanilla” gradient ascent and BSGL2-BSGL4 are based on796

natural gradients. Henceforth, for state features we let d = 8 and797

l = 3. The state-features are randomly assigned and we make798

sure no two states have the same state-feature. For all algorithms,799

the critic step-size is αk = α0 ·αc
αc +k 2 / 3 and the actor stepsize βc =800

β0 ·βc
βc +k , whereαc = βc = 1000. For the LSTD actor-critic and our801

method α0 = 0.1 and β0 = 0.1. For BSGL1 and BSGL2, α0 =802

0.1 and β0 = 0.01. For BSGL3 and BSGL4, we choose α0 =803

0.01 and β0 = 0.001. For all algorithms, the initial parameters804

Fig. 2. Comparison of our algorithm with LSTD and natural actor-critic
algorithms.

θ0 are zero and the temperature in (49) is set to T = 1. For our 805

algorithm, we choose χmin = 100 (cf. (33)). 806

We run each algorithm 50 times independently and Fig. 2 807

displays the mean of the average reward for the first 1,000,000 808

iterations. Table I summarizes the convergence time and con- 809

verged average reward for each algorithm. For each problem, 810

the first two columns of Table I show the mean and standard de- 811

viation of the reward achieved. The third and fourth columns list 812

the time (mean and standard deviation) it takes to convergence. 813

The last column shows the average CPU time per iteration (TPI). 814

The results are based on 50 independent runs for the GARNET 815

problem and 100 independent runs for the robot control problem. 816

Note that BSGL2 becomes numerically unstable after 500,000 817

iterations, so the reward of BSGL2 in Table I is the maximal 818

reward before numerical instability occurs and the time is the 819

time it takes to reach the maximal reward. 820

Compared to the LSTD-AC method, our method adds a 821

second-order critic update and takes advantage of the Hessian 822

estimate in the actor update. For this problem, the average CPU 823

time of one LSTD-AC iteration is 1288 μs. In comparison, the 824

average CPU time for one iteration of our algorithm is 1818 μs, 825

which means that computing the second-order critic and the in- 826

verse of the Hessian adds about 41% to the computational cost. 827

Despite the larger CPU time per iteration, our algorithm still 828

converges faster than LSTD-AC because fewer iterations are 829

needed. The CPU time per iteration of both our algorithm and 830

LSTD-AC is larger than BSGL1-4. This is likely because both 831

our algorithm and LSTD-AC use a state-action feature vector, 832

whose dimensionality is larger than the one used in BSGL1-4 833

for value function approximations. 834

Among the four algorithms in [23], BSGL3 converges faster, 835

which is consistent with the empirical study in [23]. Compared to 836

BSGL3, although our algorithm uses longer time to converge, it 837

converges to higher value (0.33) than BSGL3 (0.24). On average 838

our algorithm takes only 43 seconds to reach an average reward 839

of 0.24 vs. 122 seconds needed by BSGL3 to reach the same 840

value. 841
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TABLE I
COMPARISON OF ALL ALGORITHMS IN A GARNET AND A ROBOT CONTROL PROBLEM.

GARNET Robot Control

Alg. Name Reward Conv. Time (s) TPI(μ s) Reward Conv. Time (s) TPI(μ s)

Mean Std Mean Std Mean Std Mean Std

Our Alg. 0.33 0.070 727 10.9 1818 0.0916 0.00109 118 3.0 3281
LSTD-AC 0.29 0.091 773 9.9 1288 0.0851 0.0235 187 23 2837
BSGL-1 0.11 0.083 540 7.5 601 0.0819 0.000731 217 2.9 2173
BSGL-2 0.16 0.078 342 4.4 684 0.0909 0.00136 231 9.8 2313
BSGL-3 0.24 0.093 122 1.6 678 0.0927 0.000936 142 6.4 2372
BSGL-4 0.28 0.082 686 11.6 686 0.0916 0.000860 209 5.0 2319

For BSGL2, the Table Displays the Maximal Average Reward Before Numerical Instability Happens and the Time to
Reach the Reward

Fig. 3. View of the mission environment, where the initial region is
marked by ‘‘x’’, the goal regions are marked by green colors, and the
unsafe regions are displayed in black stripes.

B. Robot Control Problem842

In this section we compare the performance of our algorithm843

with other algorithms in a robotics application. Fig. 3 shows the844

mission environment, which is a 50 × 50 grid. We model the845

motion of the robot in the environment as the following MDP846

M:847
� State space. Each state x ∈ X corresponds to a region848

in the mission environment and can be represented by a849

coordinate (i, j), where i is the row number and j is the850

column number.851
� Action space. The action space U = {u1 , u2 , u3 , u4} cor-852

responds to four control primitives (actions): “North,”853

“East,” “South,” and “West,” which represent the direc-854

tions in which the robot intends to move. Depending on855

the location of a region, some of these actions may not856

be enabled, for example, in the lower-left corner, only857

actions “North” and “East” are enabled. For each state x, 858

let Ue(x) denote the enabled actions in this state. 859
� Transitional model. A control action does not necessarily 860

lead the robot to the intended direction because the out- 861

come is subject to noise in actuation and possible surface 862

roughness in the environment. In this problem, a robot 863

can only move to the adjacent state in one step. For each 864

enabled control, the robot moves to the intended direction 865

with probability 0.7 and moves to other allowed directions 866

with equal probabilities. 867
� Initial state. The robot starts from state x0 , which is 868

labeled as ‘x’ in Fig. 3. 869
� Reward function. There are some unsafe regions XU , 870

which should be avoided, in the mission environment. 871

There are also some goal states XG that should be visited 872

as often as possible. The unsafe and goal states are dis- 873

played as black stripes and green solid colors in Fig. 3, 874

respectively. The objective is to find an optimal policy that 875

maximizes the expected average reward with an one-step 876

reward function defined by 877

g(x, u) =

⎧
⎪⎨

⎪⎩

1, ifx ∈ XG,

−1, ifx ∈ XU ,

0, otherwise.

This problem is the foundation of many complex robot motion 878

control problems in which MDPs are defined in more complex 879

ways, i.e., using temporal logic [15]–[17]. 880

In this problem, we consider two state features that represent 881

the safety and affinity of the state, respectively. For each pair 882

of states xi ,xj ∈ X, we define d(xi ,xj ) to be the minimum 883

number of transitions from xi to xj . We say xj ∈ N (xi)—a 884

neighborhood of xi—if and only if d(xi ,xj ) ≤ rn , for some 885

fixed integer rn given a priori. For each state x ∈ X, the safety 886

score is defined as the ratio of the safe neighboring states over 887

all neighboring states of x. Namely, 888

safety(x) =

∑
y∈N (x) Is(y)

|N (x)| , (50)

where Is(y) is an indicator function such that Is(y) = 1 if and 889

only if y ∈ X \ XU and Is(y) = 0 otherwise. A higher safety 890

score for the current state of the robot means it is less likely for 891
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Fig. 4. Comparison of our algorithm with LSTD and natural actor-critic
algorithms.

the robot to reach an unsafe region in the future. We define the892

affinity score of a state x ∈ X as893

affinity(x) = − min
y∈XG

d(x,y)

which is the negative of the minimum number of transitions894

from x to any goal state. The state feature is defined to be895

fS(x) = [safety(x),affinity(x)],

and the state-action feature fSA (x, u) is calculated using (48). In896

this application, we use the following Boltzmann distribution.897

μθ(u|x) =
efSA (x,u)′θ/T

∑
u∈Ue (x) e

fSA (x,u)′θ/T , (51)

where T is the temperature. Note that the only difference of (51)898

with (49) is that (51) restricts to enabled actions.899

Again, we compare our algorithm with the LSTD-AC900

algorithm in [14] and the four algorithms in [23]. We run each901

algorithm 100 times independently and Fig. 4 shows the compar-902

ison of the average reward for the first 100,000 iterations. For all903

algorithms, the initial θ is (0, 5) and the temperature T = 5. The904

step-sizes satisfy αc = α0 ·αc
αc +k 2 / 3 and βc = β0 ·βc

βc +k . For LSTD-AC905

and our algorithm, we set α0 = 0.1, αc = 1000, β0 = 0.01 and906

βc = 1000. For BSGL1-BSGL4, we set α0 = 0.1, αc = 1000,907

β0 = 0.001 and βc = 10000. We use χmin = 30 in (32).908

Table I summarizes the convergence time and the converged909

reward for all algorithms. Among the three natural gradient-910

based algorithms, BSGL3 performs the best, but on average it is911

still slower than our method in this problem. The convergence912

rate of BSGL1 is much worse than the rest of the algorithms.913

For this problem, we did not observe numerical instability for914

BSGL2.915

For the robot control problem, the average CPU time per916

iteration is 3281 μs for our algorithm vs. 2837 μs for LSTD-917

AC, that is, about 15.7% higher. The computational overhead918

of the second-order critic in this problem is much lower than in919

the GARNET problem, which is due to the fact that the robot 920

control problem has less parameters. 921

The CPU time per iteration of both LSTD-AC and our algo- 922

rithm is larger than that of BSGL1-BSGL4, but the difference 923

is much smaller compared with the GARNET problem. Since 924

significant less iterations are needed for our algorithm, it con- 925

verges faster than all other algorithms. Specifically, the second- 926

best algorithm, BSGL3, takes on average 20.3% more time to 927

converge. 928

VIII. CONCLUSIONS AND FUTURE WORK 929

In this paper we propose a general estimate for the Hessian 930

matrix of the long-run reward in actor-critic algorithms. Based 931

on this estimate, we present a novel second-order actor-critic 932

algorithm which uses second-order critic and actor. The actor, 933

in particular, uses a direct estimate of the Hessian matrix to 934

improve the rate of convergence for ill-conditioned problems. 935

Building on the LSTD-AC algorithm in [16], [14], our algorithm 936

extends the critic to approximate the Hessian and revises the 937

actor to update the policy parameters using Newton’s method. 938

We compare our algorithm with the LSTD-AC algorithm and 939

the four algorithms in [23], three of which are based on natural 940

gradients, in two applications. The results show that our method 941

can achieve a better rate of convergence for many problems. 942

As a variant of Newton’s method, our method has similar 943

limitations. First, the cost of maintaining a Hessian estimate is 944

quadratic to the number of parameters. As a result, our algo- 945

rithm is only suitable for problems with relatively small num- 946

ber of parameters. Second, our algorithm requires the second 947

derivative of the policy function, which implies that the method 948

can not be applied if the policy function is not twice differ- 949

entiable or its second-order derivatives are hard to obtain. Our 950

algorithm is suitable for the cases where the reward is more 951

sensitive to some parameters vs. others, leading to potentially 952

ill-conditioned problems that are best handled by Newton’s 953

method. 954

One direction for future work is to use part of (9) rather than 955

all four terms, so as to achieve a better tradeoff between con- 956

vergence rate and computational cost per iteration. In addition, 957

the algorithm described in this paper is suitable for the average 958

reward problem. Since Theorem IV.2 holds for all three types 959

of rewards, similar algorithms can be derived for the discounted 960

and the total reward cases. 961
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APPENDIX A 965

PROOF OF LEMMA VI.1 966

Lemma A.1: Suppose {γk}, {ζk}, {βk} are three determin- 967

istic positive sequences that satisfy (36) for some d1 , d2 > 0. 968

Then, 969
∑

k

(max(γk , βk )/ζk )d <∞ for some d > 0.
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Proof: Note that limk (γk/ζk ) = 0 and limk (βk/ζk ) = 0.970

Letting d > max(d1 , d2), it follows
∑

k (γk/ζk )
d <∞ and971 ∑

k (βk/ζk )
d <∞. Further,972

∑

k

(max(γk , βk )/ζk )
d =

∑

k

(max(γk/ζk , βk/ζk ))d

=
∑

k

max((γk/ζk )d , (βk/ζk )d)

≤
∑

k

(γk/ζk )d +
∑

k

(βk/ζk )d

< ∞.

The second equality is due to the function f(x) = xd being973

monotonically increasing in the range [0,∞) when d > 0.974

The first inequality follows because both {(γk/ζk )d} and975

{(βk/ζk )d} are positive sequences. �976

A. Proof of Lemma VI.1:977

Proof: Define θ̂k = (θk , rk ) to be the collection of all pa-978

rameters in (39). We can write (39) as979

sk+1 = sk + ζk (hθ̂k
(yk ) − Gθ̂k

(yk )sk ) + ζkΞksk . (52)

We have980

‖θ̂k+1 − θ̂k‖ ≤ ‖θk+1 − θk‖ + ‖rk+1 − rk‖
≤ βkFk + γkF

r
k

≤ max(βk , γk )(Fk + Fr
k ).

The last inequality is implied since βk > 0, γk > 0, Fk and981

Fr
k are nonnegative processes. Combined with Lemma A.1, we982

can see Assumptions 3.1.(1–3) in [12] are satisfied. In addition,983

Assumptions 3.1.(4–10) in [12] are satisfied due to Assump-984

tions A.(3–11). As a result, Thm. 3.2 in [12] holds and implies985

lim
k

‖Ḡ(θ̂k )sk − h̄(θ̂k )‖ = 0, w.p.1. (53)

The left hand side of (53) is equivalent to the left hand side of986

the lemma. �987

APPENDIX B988

PROOF OF THEOREM VI.6989

We first present the following lemmas. We define the norm990

‖ · ‖ of a matrix to be the norm of the column vector containing991

all of its elements.992

Lemma B.1: Under iteration (27), we have993

‖Ak+1 − Ak‖ ≤ γkF
A
k ,

‖bk+1 − bk‖ ≤ γkF
b
k ,

for some processes {FA
k } and {Fb

k } with bounded moments,994

where γk is the stepsize in (27).995

Proof: According to (27), we have996

Ak+1 − Ak

= γk

(
zk (φ

′
θk

(xk , uk ) − φ′
θk + 1

(xk+1 , uk+1)) − Ak

)
.

Similar to Lemma VI.5 and because zk has bounded moments 997

and φθ ∈ D(2) , it can be verified that Ak has bounded mo- 998

ments. This establishes the first statement of the Lemma. We 999

can prove the second statement of the Lemma for {bk} in the 1000

same way given that the one-step reward function g ∈ D(2) , first 1001

by establishing that αk has bounded moments. � 1002

Lemma B.2: Suppose f(·) is a locally Lipschitz continuous 1003

function on a domain D. Let {υk} be a sequence of ran- 1004

dom variables with bounded moments defined on D such that 1005

‖υk+1 − υk‖ ≤ γkFk for some {Fk} with bounded moments 1006

w.p.1. Then ‖f(υk+1) − f(υk )‖ ≤ γkF
f
k for some {Ff

k } with 1007

bounded moments w.p.1. 1008

Proof: Since ‖υk+1 − υk‖ ≤ γkFk , it follows ‖υk+1 − 1009

υk | <∞ w.p.1. Since {υk} has bounded moments, υk must 1010

be in a compact set w.p.1 for ∀k. Then, by Lipschitz continu- 1011

ity, ‖f(υk+1) − f(υk )‖ ≤ C‖υk+1 − υk‖ ≤ γkCFk for some 1012

constant C. The lemma can be proved by letting Ff
k = CFk . � 1013

Lemma B.3: Let υ = {A,b} be a vector consisting of all 1014

elements in an m×m matrix A and a vector b ∈ Rm . The 1015

function f(υ) = A−1b is locally Lipschitz continuous with re- 1016

spect to A and b on the domain D = {υ : det(A) ≥ ε}, where 1017

ε is a positive constant. 1018

Proof: Let Aa denote the adjoint matrix of A. The function 1019

fa(υ) = Aab is locally Lipschitz continuous as it is a polyno- 1020

mial function, so ‖fa(υ1) − fa(υ2)‖ ≤ C‖υ1 − υ2‖ for some 1021

constant C and υ1 and υ2 that belong to a compact set. Since 1022

A−1 = Aa/det(A) and for υ1 = {A1 ,b1}, υ2 = {A2 ,b2}, 1023

we have 1024

‖f(υ1) − f(υ2)‖ = ‖A−1
1 b1 − A−1

2 b2‖
= ‖Aa

1b1/det(A1) − Aa
2b2/det(A2)‖

≤ 1
ε
‖Aa

1b1 − Aa
2b2‖

=
1
ε
‖fa(υ1) − fa(υ2)‖

≤ C

ε
‖υ1 − υ2‖.

So f(υ) = A−1b must be locally Lipschitz continuous on the 1025

domain D = {υ : det(A) > ε}. � 1026

A. Proof of Theorem VI.6 1027

Proof: Recall that V(A) is the column vector stacking all 1028

columns in a matrix A. Let υk = (V(Ak ),bk ) where Ak and 1029

bk are the iterates in (27). It follows 1030

‖υk+1 − υk‖ = ‖Ak+1 − Ak‖ + ‖bk+1 − bk‖
≤ γk (FA

k + Fb
k ).

The last equality is due to Lemma B.1 and FA
k + Fb

k has 1031

bounded moments. Define the function f(υk ) = A−1
k bk , which 1032

implies rk = f(xk ) = A−1
k bk when det(Ak ) ≥ ε by (28). The 1033

lemma can be easily proved by combining Lemma B.3 and 1034

Lemma B.2. � 1035
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