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Abstract
This paper considers the problem of deploying a robot from a specification given as a tempo-

ral logic statement about some properties satisfied by the regions of a large, partitioned environ-
ment. We assume that the robot has noisy sensors and actuators and model its motion through the
regions of the environment as a Markov Decision Process (MDP). The robot control problem be-
comes finding the control policy which maximizes the probability of satisfying the temporal logic
task on the MDP. For a large environment, obtaining transition probabilities for each state-action
pair, as well as solving the necessary optimization problem for the optimal policy, are compu-
tationally intensive. To address these issues, we propose an approximate dynamic programming
framework based on a least-square temporal difference learning method of the actor-critic type.
This framework operates on sample paths of the robot and optimizes a randomized control policy
with respect to a small set of parameters. The transition probabilities are obtained only when
needed. Simulations confirm that convergence of the parameters translates to an approximately
optimal policy.

1 Introduction
One major goal in robot motion planning and control is to specify a mission task in an expressive
and high-level language and to convert the task automatically to a control strategy for the robot. The
robot is subject to mechanical constraints, actuation and measurement noise, and limited communi-
cation and sensing capabilities. The challenge in this area is the development of a computationally
efficient framework accommodating both the robot constraints and the uncertainty of the environ-
ment, while allowing for a large spectrum of task specifications.

In recent years, temporal logics such as Linear Temporal Logic (LTL) and Computation Tree
Logic (CTL) have been promoted as formal task specification languages for robotic applications
(Kress-Gazit et al., 2007; Karaman and Frazzoli, 2009; Loizou and Kyriakopoulos, 2004; Quottrup
et al., 2004; Wongpiromsarn et al., 2009; Bhatia et al., 2010). They are appealing due to their high
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expressivity and closeness to human language. (Reviewer 2: the authors claim that LTL and CTL
are close to natural language. This reviewer believes this statement to be untrue. What is true is
that these languages are often able to formally capture informal requirements specified in natural
language. ) Moreover, several existing formal verification (Clarke et al., 1999; Baier et al., 2008)
and synthesis (Baier et al., 2008; Liu et al., 2013; Luna et al., 2014) tools can be adapted to generate
motion plans and provably correct control strategies for the robots.

In this paper, we assume that the motion of the robot in the environment is described by a (finite)
Markov Decision Process (MDP). In this model, the robot can precisely determine its current state,
and by applying an action (corresponding to a motion primitive) enabled at each state, it triggers
a transition to an adjacent state with a fixed probability. We are interested in controlling the robot
such that it maximizes the probability of satisfying a temporal logic formula over a set of properties
satisfied at the states of the MDP.

By adapting existing probabilistic model checking (Baier et al., 2008; De Alfaro, 1997; Vardi,
1999) and synthesis (Courcoubetis and Yannakakis, 1990; Baier et al., 2004) algorithms, we (Ding
et al., 2011; Lahijanian et al., 2010) and others (Wolff et al., 2012) recently developed such com-
putational frameworks for formulae of LTL and a fragment of probabilistic CTL. With the above
approaches, an optimal control policy can be generated to maximize the satisfaction probability,
given that the transition probabilities are known for each state-action pair of the MDP, which can be
computed by using a Monte-Carlo method and repeated forward simulations.

In real applications, the size of the state space of the MDP is usually very large. Our previous
approaches are not suitable for large-sized problems due to the following limitations. First, they
require transition probabilities for all state-action pairs, which are costly to obtain even if an accurate
simulator of the robot in the environment is available. Second, the optimal policy is calculated by
solving a large Linear Programming (LP) problem on the product between the original MDP and a
Rabin automaton. The existing LP solvers are not efficient enough and their memory usages increase
rapidly with problem size.

In this paper, we show that approximate dynamic programming (Si, 2004; Bertsekas and Tsitsik-
lis, 1996) can be effectively used to address the above limitations. For large dynamic programming
problems, an approximately optimal solution can be provided using actor-critic algorithms (Barto
et al., 1983). By approximating both the policy and state-action value function with a parameterized
structure, actor-critic algorithms use much less memory compared with other dynamic programming
techniques. In particular, actor-critic algorithms with Least Squares Temporal Difference (LSTD)
learning have been shown recently to be a powerful tool for large-sized problems(Moazzez Estanjini
et al., 2011b; Estanjini et al., 2012; Konda and Tsitsiklis, 2003).

In (Ding et al., 2011), the authors show that a motion control problem with temporal logic
specifications could be converted to a maximal reachability probability (MRP) problem, i.e., maxi-
mizing the probability of reaching a set of states. In (Moazzez Estanjini et al., 2011b), we show that
the MRP problem is equivalent to a Stochastic Shortest Path (SSP) problem and propose an actor-
critic method to solve the SSP problem. In (Ding et al., 2012), we apply the actor-critic method in
(Moazzez Estanjini et al., 2011b) to find a control policy that maximizes the probability of satisfying
a temporal logic specification. Our proposed algorithm produces a Randomized Stationary Policy
(RSP), which gives a probability distribution over enabled actions at a state. Our method requires
transition probabilities to be generated only along sample paths, and is therefore particularly suitable
for robotic applications. To the best of our knowledge, this is the first attempt to combine temporal
logic formal synthesis with actor-critic type methods.

This paper is based on the work of (Moazzez Estanjini et al., 2011b) and (Ding et al., 2012) and
makes the following improvement:

(i) We provide a proof for the equivalence of MRP and SSP problems.
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(ii) We provide a proof of convergence for our actor-critic method on the SSP problem.

(iii) Compared with (Ding et al., 2012), we propose a more accurate safety score, which helps
simplify the RSP structure.

(iv) We include a case study with more complex temporal logic specifications and present results
showing that the specifications are satisfied in a sample path generated by the actor-critic
method.

(v) We analyze the time and memory usages of the actor-critic method in (Ding et al., 2011) for
problems with different sizes. The results show that the actor-critic method uses much less
time and memory for large problems.

The remainder of the paper is organized as follows. In Sec. 2, we formulate the motion control
problem with temporal logic specifications. Sec. 3 describes our method to solve this problem.
Sec. 4 illustrates our experiment setups and presents the results accordingly. Sec. 5 concludes the
paper.

Notation We use bold letters to denote sequences and vectors. Vectors are assumed to be column
vectors. Transpose of a vector y is denoted by yT. |S| denotes the cardinality of a set S.

2 Problem Formulation
Markov Decision Processes (MDPs) are mathematical frameworks for analyzing partially control-
lable systems and are commonly used to model robot movements.

In this paper, we consider a robot moving in an environment partitioned into regions such as the
Robotic Indoor Environment (RIDE) (see Fig. 1)Please add citation for RIDE. Each region in the
environment is associated with a set of properties. Properties can be Un for unsafe regions, or Up
for a region where the robot can upload data. We assume that the robot can detect its current region.
Moreover, the robot is programmed with a set of motion primitives allowing it to move from a region
to an adjacent region. To capture noise in actuation and sensing, we make the natural assumption
that, at a given region, a motion primitive designed to take the robot to a specific adjacent region
may take the robot to a different adjacent region.

Such a robot model naturally leads to a labeled Markov Decision Process (MDP), which is
defined below.
Definition 2.1 (Labeled Markov Decision Process). A labeled Markov Decision Process (MDP) is
a tupleM = (Q, q0, U,A, P,Π, h), where

(i) Q = {1, . . . , n} is a finite set of states;

(ii) q0 ∈ Q is the initial state;

(iii) U is a finite set of actions;

(iv) A : Q→ 2U maps state q ∈ Q to actions enabled at q;

(v) P : Q × U × Q → [0, 1] is the transition probability function such that for all q ∈ Q,∑
q′∈Q P (q, u, q′) = 1 if u ∈ A(q), and P (q, u, q′) = 0 for all q′ ∈ Q if u /∈ A(q);

(vi) Π is a set of properties;
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Figure 1: Robotic InDoor Environment (RIDE) platform. (Left:) An iCreate mobile platform mov-
ing autonomously through the corridors and intersections of an indoor-like environment. The robot
is equipped with a RFID reader that can correctly identify cards placed on the floor and with a laser
range finder that is used to implement motion primitives such as GoLeft and GoForward in an in-
tersection, etc. (Right:) An example schematic of the environment. The black blocks represent
walls, and the grey and white regions are intersections and corridors, respectively. The labels inside
a region represent properties associated with regions, such as Un (unsafe regions) and Ri (risky
regions).

(vii) h : Q→ 2Π is the property map.

Note that although this paper focuses on robot control in RIDE platform, the label MDP defi-
nition is general and can be used to in applications such as add some examples and citations here

In RIDE platform, each state of the MDPMmodeling the robot in the environment corresponds
to an ordered set of regions in the environment, while the actions label the motion primitives that can
be applied at a region. For example, a state ofM may be labelled as I1-C1, which means that the
robot is currently at region C1, coming from region I1. Each ordered set of regions corresponds to a
recent history of the robot trajectory, and is needed to ensure the Markov property (more details on
such MDP abstractions of the robot in the environment can be found in e.g., (Lahijanian et al., 2010).
The transition probability function P can be obtained through extensive simulations of the robot in
the environment. We assume that there exists an accurate simulator that is capable of generating
(computing) the transition probability P (q, u, ·) for each state-action pair q ∈ Q and u ∈ A(q). In
our previous work (Lahijanian et al., 2010), we developed such a simulator for the robot shown in
Fig. 1. More details on the construction of the MDP model for a robot in the RIDE platform are
included in Sec. 4.

If the exact transition probabilities are not known,M can be seen as a labeled Non-Deterministic
Transition System (NTS) MN = (Q, q0, U,A, P

N ,Π, h), where P in M is replaced by PN :
Q×U ×Q→ {0, 1}, and PN (q, u, q′) = 1 indicates a possible transition from q to q′ applying an
enabled action u ∈ A(q); if PN (q, u, q′) = 0, then the transition from q to q′ is not possible under
u.

Reviewer 2’s comment: - p.p. 4 line 47: In the definition of a path, the second region in the
label associated with each state matches the first region of the following state. Only then will a path
correspond(s) to a sequence of regions in the environment.

A path onM is a sequence of states q = q0q1 . . . such that for all k ≥ 0, there exists uk ∈ A(qk)
such that P (qk, uk, qk+1) > 0. Along a path q = q0q1 . . ., qk is said to be the state at time k. The
trajectory of the robot in the environment is represented by a path q onM (which corresponds to
a sequence of regions in the environment). A path q = q1q2 . . . generates a sequence of properties
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h(q) := o1o2 . . ., where ok = h(qk) for all k ≥ 0. We call o = h(q) the word generated by q.
Definition 2.2 (Policy). A control policy for an MDP M is an infinite sequence M = µ0µ1 . . .,
where µk : Q× U → [0, 1] is such that

∑
u∈A(q) µk(q, u) = 1, for all k ≥ 0 and ∀q ∈ Q.

Namely, at time k, µk(q, ·) is a discrete probability distribution over A(q). If µk = µ for all
k ≥ 0, then M = µµ . . . is called a stationary policy. If for all k ≥ 0 and ∀q ∈ Q, µk(q, u) = 1
for some u, then M is deterministic; otherwise, M is randomized. Given a policy M , we can then
generate a sequence of states onM, by applying uk with probability µk(qk, uk) at state qk for all
time k. Such a sequence is called a path ofM under policy M .

We require the trajectory of the robot in the environment to satisfy a rich task specification given
as a Linear Temporal Logic (LTL) (see, e.g., (Baier et al., 2008; Clarke et al., 1999)) formula over
a set of properties Π. An LTL formula over Π is evaluated over an (infinite) sequence o = o0o1 . . .
(e.g., a word generated by a path onM), where ok ⊆ Π for all k ≥ 0. We denote o � φ if word
o satisfies the LTL formula φ, and we say q satisfies φ if h(q) � φ. Roughly, φ can be constructed
from a set of properties Π, Boolean operators ¬ (negation), ∨ (disjunction), ∧ (conjunction), −→
(implication), and temporal operators X (next), U (until), F (eventually), G (always). A variety
of robotic tasks can be easily translated to LTL formulas. For example, the following complex task
command in natural language: “Gather data at locations Da infinitely often. Only reach a risky
region Ri if valuable data VD can be gathered, and always avoid unsafe regions (Un)” can be
translated to the LTL formula:

φ := GFDa ∧ G (Ri −→ VD) ∧ G¬Un.

In (Ding et al., 2011) (see also (Rutten et al., 2004)), we consider the following problem.
Problem 2.3. Given a labeled MDP M = (Q, q0, U,A, P,Π, h) and an LTL formula φ, find a
control policy that maximizes the probability of its path satisfying φ.

The probability that paths generated under a policy µ satisfy an LTL formula φ is well defined
with a suitable measure over the set of all paths generated by µ (Baier et al., 2008).

In (Ding et al., 2011), we proposed a computational framework to solve Prob. 2.3, by adapting
methods from the area of probabilistic model checking (De Alfaro, 1997; Baier et al., 2008; Vardi,
1999). However, this framework relies upon the fact that the transition probabilities are known for
all state-action pairs. These transition probabilities are typically not available for robotic applica-
tions and computationally expensive to compute. Moreover, even if the transition probabilities are
obtained for each state-action pair, this method still requires solving a linear program on the product
of the MDP and the automata representing the formula, which can be very large (thousands or even
millions of states).

In many robotic applications, the NTS model MN = (Q, q0, U,A, P
N ,Π, h) can be quickly

constructed for the robot in the environment and a simulator is avaliable to generate transition prob-
abilities on the fly. In this paper, we focus on the following problem.
Problem 2.4. Given a labeled NTS MN = (Q, q0, U,A, P

N ,Π, h), an LTL formula φ, and an
accurate simulator to compute transition probabilities P (q, u, ·) given a state-action pair (q, u),
find a control policy that maximizes the probability of its path satisfying φ.

Transition probabilities for all state-action pairs are necessary for exact optimal solution of
Prob. 2.4. In this paper, we propose an approximate method that only needs transition probabili-
ties for a portion of state-action pairs. Our approach to Prob. 2.4 can be summarized as follows.
First, we formulate the problem as a Maximal Reachability Probability (MRP) problem usingMN
and φ (Sec. 3.1), and convert the MRP problem into a Stochastic Shortest Path (SSP) problem. We
then use an actor-critic framework to find a randomized policy giving an approximate solution to
the SSP problem (Sec. 3.3). The randomized policy is constructed to be a function of a small set of

5



parameters and we find a policy that is locally optimal with respect to these parameters. The con-
struction of a class of policies suitable for SSP problems is explained in Sec. 3.4. The algorithmic
framework presented in this paper is summarized in Sec. 3.5.

3 Control Synthesis

3.1 Formulation of the MRP Problem
- Reviewer 2: p.p. 6 line 11: what are the modifications if needed? This sentence needs rewording.
The formulation of the MRP problem is based on (Ding et al., 2011; De Alfaro, 1997; Baier et al.,

2008; Vardi, 1999) with modification if needed when using the NTSMN instead ofM. We start by
converting the LTL formula φ over Π to a so-called deterministic Rabin automaton, which is defined
as follows.
Definition 3.1 (Deterministic Rabin Automaton). A deterministic Rabin automaton (DRA) is a tuple
R = (S, s0,Σ, δ, F ), where

(i) S is a finite set of states;

(ii) s0 ∈ S is the initial state;

(iii) Σ is a set of inputs (alphabet);

(iv) δ : S × Σ→ S is the transition function;

(v) F = {(L(1),K(1)), . . . , (L(M),K(M))} is a set of pairs of sets of states such that L(i),
K(i) ⊆ S for all i = 1, . . . ,M .

A run of a Rabin automaton R, denoted by r = s0s1 . . ., is an infinite sequence of states in R
such that for each k ≥ 0, sk+1 ∈ δ(sk, α) for some α ∈ Σ. A run r is accepting if there exists a
pair (L,K) ∈ F such that r intersects with L finitely many times and K infinitely many times. For
any LTL formula φ over Π, one can construct a DRA (which we denote byRφ) with input alphabet
Σ = 2Π accepting all and only words over Π that satisfy φ (see (Gradel et al., 2002)).

We then obtain an MDP as the product of a labeled MDPM and a DRA Rφ, which captures
all paths of M satisfying φ. Note that this product MDP can only be constructed from an MDP
and a deterministic automaton, this is why we require a DRA instead of, e.g., a (generally non-
deterministic) Büchi automaton (see (Baier et al., 2008)).

Reviwer 2: - p.p. 6 line 53: FP should be part of the definition of the product MDP.
Definition 3.2 (Product MDP). The product MDPM×Rφ between a labeled MDPM = (Q, q0, U,
A, P,Π, h) and a DRARφ = (S, s0, 2

Π, δ, F ) is an MDP P = (SP , sP0, UP , AP , PP , hP), where

(i) SP = Q× S is a set of states;

(ii) sP0 = (q0, s0) is the initial state;

(iii) UP = U is a set of actions inherited fromM;

(iv) AP is also inherited fromM and AP((q, s)) := A(q);

(v) PP gives the transition probabilities:

PP((q, s), u, (q′, s′))=

{
P (q, u, q′), if q′ = δ(s, h(q)),

0, otherwise.
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Note that hP is not used in the product MDP. Moreover, P is associated with pairs of accepting
states (similar to a DRA) FP := {(LP(1),KP(1)), . . . , (LP(M),KP(M))} where LP(i) = Q ×
L(i), KP(i) = Q×K(i), for i = 1, . . . ,M .

The product MDP is constructed such that, given a path (s0, q0)(s1, q1) . . ., the corresponding
path s0s1 . . . onM satisfies φ if and only if there exists a pair (LP ,KP) ∈ FP satisfying the Rabin
acceptance condition, i.e., the set KP is visited infinitely often and the set LP is visited finitely
often.

We can make a very similar product between a labeled NTSMN = (Q, q0, U,A, P
N ,Π, h) and

Rφ. This product is also an NTS, which we denote by PN = (SP , sP0, UP , AP , P
N
P ,Π, hP) :=

MN ×Rφ, associated with accepting sets FP . The definition (and the accepting condition) of PN
is exactly the same as for the product MDP. The only difference between PN and P is in PNP ,
which is either 0 or 1 for every state-action-state tuple.

From the product P or equivalently PN , we can proceed to construct the MRP problem. To do
so, it is necessary to produce the so-called accepting maximum end components (AMECs). An end
component is a subset of an MDP (consisting of a subset of states and a subset of enabled actions
at each state) such that for each pair of states (i, j) in P , there is a sequence of actions such that i
can be reached from j with positive probability, and states outside the component cannot be reached
(See Def. 10.117 of (Baier et al., 2008)). The definition of AMECs is as follows.
Definition 3.3 (Accepting Maximal End Components). Given (LP ,KP) ∈ FP , an AMEC of P
is the largest end component containing at least one state in KP and no state in LP , for a pair
(KP , LP) ∈ FP . Dennis, can you confirm (and improve) the definition of AMEC?

Note that an AMEC always contains at least one state in KP and no state in LP . In addition,
AMECs are “absorbing” in the sense that the state does not leave once it reach any state in an
AMEC. add citation here A procedure to obtain all AMECs of an MDP is outlined in (Baier et al.,
2008). This procedure is intended to be used for the product MDP P , but it can be used without
modification to find all AMECs associated withP whenPN is used instead ofP . This is because the
information needed to construct the AMECs is the set of all possible state transitions at each state,
and this information is already contained in PN . Note that the computation of AMECs, whose time
complexity is quadratic to the size of P or PN , cannot be avoided in any method as long as the LTL
formula is not co-safe (Baier et al., 2008). As a result, we exclude the time of calculating AMECs
when comparing our actor-critic algorithm with alternative methods. For a co-safe LTL formula,
this computation cost can be avoided by using Deterministic Finite Automaton (DFA) instead of
DRA (Baier et al., 2008).

If we denote by S?P as the union of all states in all AMECs associated with P , it has been shown
in probabilistic model checking (see e.g., (Baier et al., 2008)) that maximizing the probability of
satisfying the LTL formula is equivalent to a Maximal Reachability Probability (MRP) problem
whose definition is as follows.
Problem 3.4. Given a product MDP P = (SP , sP0, UP , AP , PP , FP) and a set of states S?P ⊆ SP ,
find the optimal policy µ that maximizes the probability of reaching the set S?P .

If transition probabilities are available for each state-action pair, then Problem 3.4 can be solved
by a linear program (see (Puterman, 1994; Baier et al., 2008)). The resultant optimal policy is
deterministic and is a huge table containing optimal controls for each state s in P . In this paper,
we approximate the optimal policy µ with a parameterized policy µθ, which improves computation
efficiency by taking advantage of prior knowledge of the policy structure.

By definition of AMECs, if the state of the product MDP reaches S?P , it can not leave it. We call
such a state set absorbing state set. Intuitively, the only case when the state does not reach S?P is
because it is “trapped” in other set of states. We present the following definition.
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Definition 3.5 (Trap State). A trap state is a state on product MDP P that can not reach S?P under
any policy.

Denote by S̄?P the set of all trap states, we have the following theorem.
Theorem 3.6. S̄?P is an absorbing state set of product MDP P . Furthermore, in product MDP P ,
there is no absorbing state set in states SP/(S̄?P ∪ S?P).

Proof. If we assume that there is a state sAP ∈ S̄?P and a state sBP /∈ S̄?P such that the sBP is accessible
from sAP under certain policy. By definition of S̄?P , S?P should not be accessible from sAP . However,
s?P is accessible from sBP thus is accessible from sAP . This contradiction shows that no outside state
is accessible from any state in S̄?P , thus S̄?P is an absorbing state set.

In addition, if there exists any other absorbing state set that does not intersect with either S?P or
S̄?P . By definition, states in such an absorbing state state should be trap states, thus this set should
be a subset of S̄?P , which is contradictory.

Remark 3.7. Theorem 3.6 suggests that Problem 3.4 is equivalent to the problem of minimizing the
probabilities of reaching the set S̄?P .
Remark 3.8. It is only necessary to find the optimal policy for states not in the set S?P . This is
because by construction, there exists a policy inside any AMEC that almost surely satisfies the LTL
formula φ by reaching a state inKP infinitely often. This policy can be obtained by simply choosing
an action (among the subset of actions retained by the AMEC) at each state randomly, i.e., a trivial
randomized stationary policy exists that almost surely satisfies φ.

3.2 Conversion from MRP to Stochastic Shortest Path (SSP) Problem
Although linear program can be used to solve Problem 3.4, it has high time and memory complexity.
In particular, it requires transition probabilities for all states of the product MDP. In many situations,
we only have a simulator to generate the transition probabilities on the fly, and due to the large state
space, we want to avoid simulating for all states.

The so-called approximate dynamic programming (also known as neuro-dyanmic programming
or reinforcement learning) can help solve these issues (Bertsekas and Tsitsiklis, 1996; Bertsekas
et al., 1995; Sutton and Barto, 1998). In order to apply techniques in approximate dynamic pro-
gramming, we need to convert the MRP problem into a Stochastic Shortest Path (SSP) problem. We
define the following new MDP based on the product MDP.
Definition 3.9 (SSP MDP). Given the product MDP P = (SP , sP0, UP , AP , PP , FP) and a set of
states S?P ⊆ SP , define a new MDP P̃ = (S̃P , s̃P0, ŨP , ÃP , P̃P), where

(i) S̃P = (SP \ S?P) ∪ {s?P}, where s?P is a “dummy” terminal state;

(ii) s̃P0 = sP0 (without loss of generality, we exclude the trivial case where sP0 ∈ S?P );

(iii) ŨP = UP ;

(iv) ÃP(sP) = AP(sP) for all sP ∈ SP , and for the dummy state we set ÃP(s?P) = ŨP ;

(v) The transition probability is redefined as follows. We then define:

P̃P(sP , u, s
′
P)

=


∑

s′′P∈S?P

PP(sP , u, s
′′
P), if s′P = s?P ,

PP(sP , u, s
′
P), if s′P ∈ SP \ S?P ,
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for all sP ∈ SP \ (S?P ∪ S̄?P) and u ∈ ŨP . Moreover, for all sP ∈ S̄?P and u ∈ ŨP , we set
P̃P(s?P , u, s

?
P) = 1 and P̃P(sP , u, sP0) = 1;

For all sP ∈ S̃P and u ∈ ŨP , we define a one-step cost function g̃P(sP , u) = 1 if sP ∈ S̄?P ,
and g̃P(sP , u) = 0 otherwise. Then the SSP problem is defined as follows:
Problem 3.10. Given an SSP MDP P̃ = (S̃P , s̃P0, ŨP , ÃP , P̃P) and a one-step cost function g̃P ,
find a policy µ to minimize the expected total cost

ᾱµ = E

{
T∗∑
k=0

g̃P(xk, uk)

}
, (1)

where T ∗ is the first time when s∗P is reached, xk and uk are the state and the action at time k,
respectively.
Remark 3.11. In product MDPP , both S?P and S̄?P are absorbing state sets; When the state reaches
S?P in P , it cannot leave. In contrast, in SSP MDP P̃ , s?P is the only absorbing state; Whenever the
state reaches S̄?P , it returns to the initial state s̃P0 (as if the process restarts). The expected total
cost ᾱµ in (1) is the expected total number of falls into S̄?P before reaching s?P in SSP MDP P̃ .

Let RPµ be the reachability probability in the Problem 3.4 for the policy. The following lemma
presents the relationship between RPµ and the expected total cost ᾱµ defined in (1).
Lemma 3.12. For any RSP µ, we have RPµ = 1/ (ᾱµ + 1).

Proof. According to the definition of the cost function, we know that ᾱµ is the expected number of
times when states in S̄?P are visited before the termination state s?P is reached in SSP MDP P̃ . From
the construction of P̃ , reaching s?P in P̃ is equivalent to reaching one of the goal states S?P in P .
On the other hand, in the Markov chain generated by applying policy µ to P , the states S?P and S̄?P
are the only absorbing state sets, and all other states are transient. Thus, the probability of visiting
a state in S̄?P from sP0 on P is 1 − RPµ , which is the same as the probability of visiting S̄?P for
each run of P̃ , due to the construction of transition probabilities in Def. 3.9. We can now consider a
geometric distribution where the probability of success is RPµ . Because ᾱµ is the expected number
of times when a state in S̄?P is visited before s?P is reached, this is the same as the expected number
of failures of Bernoulli trails (with probability of success being RPµ ) before a success. This implies

ᾱµ =
1−RPµ

RPµ
.

Lemma 3.12 states that the policy minimizing (1) for Problem 3.10 with MDP P̃ and the termi-
nation state s?P is a policy maximizing the probability of reaching the set S?P on P , i.e., a solution to
Problem 3.4.

Problem 3.10 can also be constructed from the NTS PN . In this case we obtain an NTS
P̃N (S̃P , s̃P0, ŨP , ÃP , P̃

N
P ), using the exact same construction as Def. 3.9, except for the defini-

tion of P̃NP . The transition function P̃NP (sP , u, s
′
P) is instead defined as:

P̃NP (sP , u, s
′
P)

=

{
max
s′′P∈S?P

PNP (sP , u, s
′′
P), if s′P = s?P

PNP (sP , u, s
′
P), if s′P ∈ SP \ S?P

for all sP ∈ SP \ (S?P ∪ S̄?P) and u ∈ ŨP . Moreover, for all sP ∈ S̄?P and u ∈ ŨP , we set
P̃NP (s?P , u, s

?
P) = 1 and P̃NP (sP , u, sP0) = 1.

9
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Figure 2: Illustration of actor-critic methods.

3.3 LSTD Actor-Critic Method
In this section, we propose an action-critic method that obtains a Randomized Stationary Policy
(RSP) (see Def. 2.2) M = µθµθ . . ., where µθ(x, u) is a function of the state-action pair (x, u) and
θ ∈ Rn, which is a vector of parameters. For convenience, we denote an RSP µθµθ . . . simply by
µθ. In addition, we denote the expected total cost defined in (1) by ᾱ(θ). In this section we assume
the RSP µθ(q, u) to be given, and we will describe in Sec. 3.4 how to design a suitable RSP.

Given an RSP µθ, we apply an iterative procedure, i.e., an actor-critic method, to obtain a policy
that locally minimizes the cost function (1) by simulating sample paths on P̃ . Each sample path on
P̃ starts at s̃P0 and ends when the termination state s?P is reached. Since the probabilities are needed
only along the sample path, we do not require the MDP P̃ , but only P̃N .

As suggested by the name, actor-critic algorithms have two learning units, an actor and a critic,
interacting with each other and with the MDP during the iterations of the algorithms. At each
iteration, the critic observes the state and the one-step cost from the MDP and uses the observed
information to update a value function. The value function is then used to update the RSP; the actor
generates the action based on the RSP and applies the action to the MDP (cf. Fig. 2). The algorithm
stops when the gradient of ᾱ(θ) is small enough (i.e., θ is locally optimal).

Consider the SSP MDP P̃ . Let k denote time, xk ∈ S̃P and uk ∈ ÃP(xk) be the state and the
action taken at time k. Under a fixed policy µθ, {xk} and {xk, uk} are Markov chains with stationary
distributions. We denote these stationary distributions as πθ(x) and ηθ(x, u), respectively.

Let Pθ be an operator to take expectation after one transition, namely, for a function f(x, u),

(Pθf)(x, u) =
∑
j∈S̃P

∑
ν∈ÃP(j)

P̃P(x, u, j)µθ(j, ν)f(j, ν).

10



Define the function Qθ to be the function that satisfies the following Poisson equation:

Qθ(x, u) = gP(x, u) + (PθQθ)(x, u). (2)

Qθ(x, u) can be interpreted as the expected total future cost after applying action u at state x and is
named as the state-action value function (Sutton and Barto, 1998; Moazzez Estanjini et al., 2011a).
Let

ψθ(x, u) = ∇θ ln(µθ(x, u)), (3)

where ψ(x, i) = 0 when x, u are such that µθ(u|x) ≡ 0 for all θ. We assume that ψθ(x, u) is
bounded and continuously differentiable. For all state x ∈ S̃P and action u ∈ ÃP(x),ψθ(x, u) is n-
dimensional vector, where n is the dimensionality of θ. We writeψθ(x, u) = (ψ1

θ(x, u), . . . , ψnθ (x, u)).
Let 〈·, ·〉 be an inner product operator defined as following:

∇〈f1, f2〉 =
∑
x∈S̃P

∑
u∈ÃP(x)

ηθ(x, u)f1(x, u)f2(x, u), (4)

where f1(x, u) and f2(x, u) are two functions. It has been proved that the gradient of the expected
total cost ᾱ(θ) is equal to (Konda, 2002)

∇ᾱ(θ) = 〈Qθ,ψθ〉 . (5)

Instead of storing Qθ explicitly, which is a huge table, we approximateQθ with a linear architecture
of the following form

Qr
θ(x, u) = ψ

′

θ(x, u)r, r ∈ Rn, (6)

Let ‖ · ‖ be the normal induced by inner product operator 〈·, ·〉, i.e., ‖f‖2 = 〈f, f〉. The optimal
coefficient r∗ should minimize the norm between Qθ and Qr∗

θ , namely,

r∗ = arg min
r
‖Qθ −Qr

θ‖. (7)

Temporal difference algorithms can be leveraged to learn the optimal coefficient r∗.
In this paper, we present an actor-critic algorithm that uses Least Square Temporal Difference

learning to estimate the r∗. We summarize the algorithm, which is referred to as LSTD actor-critic
algorithm, in Alg. 1, and we note that it does not depend on the form of RSP µθ. In each iteration,
we first compute the transition probabilities P̃P(xk, uk, ·) using a simulator (Step 3 of Alg. 1). Note
that different with linear programming method (Ding et al., 2011), the transition probabilities are
generated on the fly. This approach is suitable for problems with large state space and strict memory
requirements. Next, we obtain the simulated next state xk+1 based on the transition probabilities
and obtain an action uk+1 based on the current RSP µθk (Step 4, 5 of Alg. 1). Then we update our
estimate of r in the critic step (Step 6 of Alg. 1), and update our estimate of θ in the actor step (Step
7 of Alg. 1.

In the critic step, zk ∈ Rn represents Sutton’s eligibility trace (Sutton and Barto, 1998; Konda,
2002); bk ∈ Rn maintains a sample estimate for one-step cost; Ak ∈ Rn×n is a sample estimate
for the matrix formed by zk(ψθk

(xk+1, uk+1)−ψθk
(xk, uk)). rk is a least square estimate of r.

In the actor step, rTkψθk
(xk+1, uk+1)ψθk

(xk+1, uk+1) is a sample estimate of the gradient
∇ᾱ(θ) (cf. Eq. (5)). The actor step is simply a gradient descent update. The role of Γ(r) is
mainly to keep the actor updates bounded, and we can for instance use Γ(r) = min( D

||r|| , 1) for
some D > 0.
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In Alg. 1, {γk} controls the critic step-size, while {βk} control the actor step-size together.
We leave the proof of convergence for Alg. 1 as well as the requirements for the step-sizes to the
appendix.

Alg. 1 learns the critic parameters using a Least Squares Temporal Difference (LSTD) method,
which has been shown to be superior to other stochastic learning methods in terms of the conver-
gence rate (Konda and Tsitsiklis, 2003; Boyan, 1999). (Estanjini et al., 2012) proposes and estab-
lishes the convergence of an LSTD actor-citic method similar to Alg. 1 for problems of minimizing
expected average costs. In comparison, the goal of the Problem 3.10 in this paper is to minimize an
expected total cost (cf. Eq. (1)).

Compared with some existing efforts of applying approximate dynamic programming techniques
in robot motion control, the actor-critic algorithm used in this paper is very suitable for large-scale
problems. For example, the method in (Fu and Topcu, 2014) is based on value iteration. Value
iteration is a classical dynamic programming technique, but it is suitable only for MDPs with small
state spaces because of its high time and memory complexity (Bertsekas et al., 1995). In addition,
value iteration also requires transition probabilities of all states. The method in (Sadigh et al., 2014)
is also based on temporal difference learning, however, it stores value function in a huge table.
i.e., explicitly stores the expected future cost for each state. The table will take a lot of memory,
which makes them unsuitable for large-sized problem. In contrast, in actor-critic algorithm, only
the combination coefficient r needs to be stored since the value function Qθ(x, u) is expressed
as linear combination of some basis functions. The problems considered in both (Fu and Topcu,
2014) and (Sadigh et al., 2014) are much smaller than ours. Actually, in the context of approximate
dynamic programming, the poor scalability of value iteration and table-based temporal difference
methods is an important motivation of actor-critic methods (Konda, 2002; Bertsekas and Tsitsiklis,
1996). Dennis, I only compare with the two papers from the perspective of approximate dynamic
programmings. You can add some comments from the temporal logic perspective.

3.4 Designing an RSP
In this section we describe an RSP suitable to be used in Alg. 1 for Problem 3.10. We first describe
some “features”, i.e., progress and safety scores for each state. Then we define some “desirability
degrees” for controls in each state and propose an RSP based on the Boltzmann distribution.

We define the overlay graph Go = (Vo, Eo) for NTS P̃N as an unweighted graph whose vertex
set V0 = S̃P . For any pair of states i, j ∈ S̃P , we have (i, j) ∈ Eo if P̃NP (i, u, j) = 1 for
some u ∈ AP(i), i.e., j is reachable from i in one step in the NTS. Let dg (i) be the shortest
distance from state i to the “dummy” terminal state s?P in Go. The distance dg(·) can be efficiently
calculated using Breath-First Search (BFS) with O(|Vo|+ |Eo|) time complexity and O(|Vo|) space
complexity (Cormen et al., 2001). Recall that S̄?P is the set of states on P̃N that cannot reach
s?P under any policy, it is easy to observe that S̄?P = {i : dg(i) =∞}. Note that the LP method
described in (Ding et al., 2011) also needs to calculate S̄?P by calculating dg(·) first. We define the
progress score of a state i ∈ S̃P as

prog(i) := −dg(i). (8)

Larger progress score means the state is closer to s?P in Go, thus, it is more likely to hit s?P in the
near future.

Let µnull be a “null policy” in which each action is chosen with equal probability. If we fix
the policy to be this “null policy”, the process {xk, uk} becomes a Markov chain. In the following
part, we calculate the “r-step transition probabilities” of this Markov chain, where r is a predefined
parameter representing sensing range.
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Algorithm 1 LSTD Actor-critic algorithm for Problem 3.10

Input: The NTS P̃N (S̃P , s̃P0, ŨP , ÃP , P̃
N
P , gP) with the terminal state s?P , the RSP µθ , and a computation

tool to obtain P̃P(sP , u, ·) for a given (sP , u) state-action pair.
1: Initialization: Set all entries in z0,b0 and r0 to zeros. Set A0 to identity matrix. Let θ0 take some initial

value. Set initial state x0 := s̃P0. Obtain action u0 using the RSP µθ0 .
2: repeat
3: Compute the transition probabilities P̃P(xk, uk, ·).
4: Obtain the simulated subsequent state xk+1 using the transition probabilities P̃P(xk, uk, ·). If xk = s?P ,

set xk+1 := x0.
5: Obtain action uk+1 using the RSP µθk

6: Critic Update:

zk+1 = λzk +ψθk
(xk, uk)

bk+1 = bk + γk (g̃P(xk, uk)zk − bk)

Ak+1 = Ak + γk(zk(ψT
θk

(xk+1, uk+1)−ψT
θk

(xk, uk))

−Ak),

rk+1 = −A−1
k bk.

7: Actor Update:

θk+1 = θk − βkΓ(rk)rTkψθk
(xk+1, uk+1)ψθk

(xk+1, uk+1)

8: until ||∇ᾱ(θk)|| ≤ ε for some given ε.

Suppose P̃ (r)
P (i, j) is the probability from state i to state j in r steps without reaching any state

in S̄?P under µnull. P̃
(r)
P (i, u, j) can be calculated recursively. For ∀i, j, u and m = 2, . . . , r,

P̃
(m)
P (i, j) =

∑
x∈S̃P

P̃
(m−1)
P (i, x)P̃ (1)(x, j),

where

P̃ (1)(i, j) =


1, if i ∈ S̄?P and i = j,

0, if i ∈ S̄?P and i 6= j,
1

|ŨP |

∑
u∈ŨP P̃P(i, u, j), otherwise.

P̃
(1)
P (i, j) is the one-step transition probability from state i to state j under µnull. Define the safety

score for state i as
safe(i) :=

∑
j

P̃
(r)
P (i, j)I(j), (9)

where I(j) is an indicator function such that I(i) = 1 if and only if i ∈ S̃P \ S̄?P and I(i) = 0
otherwise. The safety score of a state is the probability of hitting trap states S̄?P in the following r
steps under µnull. Thus, a higher safety score for the current state implies that it is less likely to
reach S̄?P in the near future.

Compared with the safety score defined in (Ding et al., 2012), (9) is much more accurate. The
safety score in (Ding et al., 2012) is the proportion of non-trap states in the neighborhood of a state,
which is problematic in many cases. For example, for a state that has only one trap state in its
neighborhood but has a large transition probability to this trap state, it will have a high safety score
according to (Ding et al., 2012) despite that it is quite unsafe.
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The desirability degree of an action u is defined as

a(θ, i, u) = θ1 × (
∑
j

P̃P(i, u, j)prog(j)− prog(i)) + θ2 × (
∑
j

P̃P(i, u, j)safe(j)− safe(i)),

(10)
which is a weighted sum of two contributing terms, and θ := [θ1, θ2]T is the vector of corresponding
weights. The first term is based on the influence of this action on improving progress, and the second
term is based on its influence on improving safety.

Our RSP is constructed using the Boltzmann distribution. The probability of taking action u at
state i is defined as

µθ(u|i) =
exp(a(θ, i, u)/T )∑

u∈ŨP exp(a(θ, i, u)/T )
, (11)

where T is the temperature of the Boltzmann distribution.
As a comparison, to alleviate the influence of the poor safety score, the RSP in (Ding et al.,

2012) “looks multiple steps ahead”, i.e., considers all possible sequences of actions in the several
following steps. In order to get probability of taking an action u at a state, the RSP in (Ding et al.,
2012) needs to calculate the sum of the probabilities of all action sequences starting with u (See.
Eq. (6) of (Ding et al., 2012)). Although “looking multiple steps ahead” helps the performance in
(Ding et al., 2012), the number of the sequences that needs to be considered increases exponentially
with the lookahead step number.

The safety score in (9) is also motivated by the concept of “looking multiple steps ahead.” You
can intuitively think the safety score in (9) as some knowledge left in a state by a “vanguard” robot
that takes policy µnull and looks r steps ahead at every state. When a robot visits a state, it refers
to this existing knowledge rather than checking the following r steps by itself, which reduces the
computational cost.

There is a well-known tradeoff between exploitation and exploration in designing RSPs (Sutton
and Barto, 1998). A RSP will have higher exploitation if it is greedier, i.e., it is more likely to only
pick the action with the highest desirability degree. However, in each step, the exploration for
undesirable actions are necessary because they may be desirable in the long run. High exploitation
and low exploration may result in sub-optimal solution. On the contrary, low exploitation and high
exploration may reduce the convergence rate of the actor-critic algorithm. Based on the Boltzmann
distribution, our RSP defined in (11) is flexible because tuning T in (11) can effectively adjust the
weight of exploration. High temperature results in more exploration and vice versa. A large T also
makes the RSP more randomized while a small T makes the RSP more deterministic.

3.5 Overall Algorithm
We now connect all the pieces together and present the overall algorithm giving a solution to
Prob. 2.4.
Proposition 3.13. Alg. 2 returns a θ? locally maximizing the probability of the RSP µθ satisfying
the LTL formula φ.

Proof. Theorem 5.4 shows that the actor-critic algorithm used in this paper returns a locally optimal
θ? such that ||∇ᾱ(θ?)|| ≤ ε for a given ε. We have shown throughout the paper that the optimal
policy maximizing the probability of reaching S?P on P is a policy maximizing the probability of
satisfying φ. We also showed throughout the paper that the SSP problem, as well as the RSP µθ can
be constructed without the transition probabilities, and only withMN . Therefore, Alg. 2 produces
an RSP maximizing the probability of satisfying φ with respect to θ up to a threshold ε.
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Algorithm 2 Overall algorithm providing a solution to Prob. 2.4
Input: A labeled NTSMN = (Q, q0, U,A, P

N ,Π, h) modeling a robot in a partitioned environment, LTL
formula φ over Π, and a simulator to compute P (q, u, ·) given a state-action pair (q, u).

1: Translate the LTL formula φ to a DRARφ.
2: Generate the product NTS PN =MN ×Rφ.
3: Find the union of all AMECs S?P associated with PN .
4: Convert from an MRP to an SSP and generate P̃N .
5: Obtain the RSP µθ with PN .
6: Execute Alg. 1 with P̃N and µθ as inputs until ||∇ᾱ(θ?)|| ≤ ε for a θ? and a given ε.

Output: RSP µθ and θ? locally maximizing the probability of satisfying φ with respect to θ up to a threshold
ε.

4 Simulation Results
We test the algorithms proposed in this paper through simulation in the RIDE environment (as shown
in Fig. 1). The transition probabilities are computed by an accurate simulator of RIDE as needed
(cf. Sec. 4.2). We compare the results of our actor-critic method with the results of the method in
(Ding et al., 2011), which is referred to as the LP method. We analyze the movements of robots
under the policy calculated by our actor-critic method in a 21 × 21 scenario. We also analyze the
increase of time and memory usages of both methods when the problem size increases.

4.1 Environment
In this case study, we consider environments with topologies such as the one shown in Fig. 3. Such
environments are made of square blocks formed by corridors and intersections. In the case shown
in Fig. 3, the corridors (C1, C2, . . . , C164) are of one- or three-unit lengths. The three-unit corridors
are used to build corners in the environment. The intersections (I1, I2, . . . , I84) are of two types,
three-way and four-way. The black regions in this figure represent the walls of the environment.
Note that there is always a corridor between two intersections. Thus, we can recursively build larger
scenes by concatenating smaller scenes and merging the one-length corridors on the borders.

There are five properties of interest associated with the regions of the environment. These prop-
erties are: VD = ValuableData (regions containing valuable data to be collected), RD = RegularData
(regions containing regular data to be collected), Up = Upload (regions where data can be uploaded),
Ri = Risky (regions that could pose a threat to the robot), and Un = Unsafe (regions that are unsafe
for the robot). If the robot reaches an unsafe state, it will break down and will not finish the task.
There are also some reset states in the scene. Whenever a robot reaches a reset state, it will be
removed from the scene. A mission ends when the robot reaches a reset state, no matter whether the
task specification has already been met or not. Our goal is to find a control strategy for the robot to
maximize the probability of finishing a task specified as an LTL formula over the set of properties
before the mission ends. Note that while VD, RD, Up, Ri, and Un are properties that comprise
the LTL formula, reset states only trigger the end of a mission and should not appear in the LTL
formula.

4.2 Construction of the MDP model
Let xk, yk be the position of the robot at time k. Denote by vk and θk the speed and the heading
of the robot, respectively. Then the movement of the robot can be described using the following
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Figure 3: An example schematic representation of an environment with intersections and corridors.
The black blocks represent walls, and the white regions are intersection and corridors. There are
five properties of interest in the regions indicated with VD = ValuableData, RD = RegularData, Up
= Upload, Ri = Risky, and Un = Unsafe. There are also some reset states in the scene. Regions with
properties of interests are plotted in corresponding colors. The correspondence of properties and
colors are shown in the legend. A and B are examples of corridors with length one and three units,
respectively. C and D are examples of three- and four-way intersections. The initial position of the
robot is marked with a blue S.

unicycle model.

xk+1 = xk + vk cos(θk) +N(0, σ2
x),

yk+1 = yk + vk sin(θk) +N(0, σ2
y),

vk+1 = vk +N(0, σ2
v),

θk+1 = θk + ρ(θd − θk) +N(0, σ2
θ),

where θd is the desired heading, ρ is the angular feedback coefficient, and σθ determines the noise
actuation noise. σv affects the speed of the robot, while σx and σy characterize the roughness of the
surface in x and y directions, respectively.

The robot is equipped with a set of feedback control primitives (actions) - GoLeft, GoForward,
GoRight, and GoBackward. Due to the presence of noise in the actuators and sensors, however,
the resulting motion may be different than intended. Thus, the outcome of each control primitive is
characterized probabilistically.

To create an MDP model of the robot in RIDE, we define each state of the MDP as a collection
of two adjacent regions (a corridor and an intersection). The first region in the pair represents the last
location of the robot, and the second region in the pair represents the current location. For instance,
the pairs C1-I2 and I3-C4 are two states of the MDP. If the robot is in C1-I2 at time k, then it is in
intersection I2 at time k and was in corridor C1 at time k− 1. If the robot is in I3-C4 at time k, then
it is in corridor C4 at time k and was in intersection I3 at time k − 1.

Through this pairing of regions, it was shown that the Markov property (i.e., the result of an
action at a state depends only on the current state) can be achieved for the motion of the robot in
RIDE (Lahijanian et al., 2010). The resulting MDP has 608 states. The set of actions available at a
state is the set of controllers available at the second region corresponding to the state. For example,
when in state C1-I2 only those actions from region I2 are allowed. Each state of the MDP whose
second region satisfies a property in Π is mapped to that property.
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To obtain accurate transition probabilities, we use the unicycle model described in (12) to simu-
late transition probabilities of the labeled MDP. Note that each MDP state is a tuple of two regions,
the second one is the current region and the first one in the previous region. To simulate transition
probabilities of an MDP state to its neighboring states. We put the robot in the center of the sec-
ond region in the MDP state (current region), and the initial heading θ is determined by the relative
position of the previous region and the current region. A simulation ends if the robot moves out
of the current region to a new region. The new MDP state will have the current region as the first
element and the new region as the second element. For each action available in each MDP state,
we performed a total of 1,000 Monte-Carlo simulations, and use the normalized frequency as our
estimate of the transition probabilities. For example, for state C1-I2 and action GoLeft, if the robots
goes to C2, C3, C4 for 450, 200, 350 times, respectively, then under action GoLeft, the transition
probabilities from state C1-I2 to state I2-C2, I2-C3, I2-C4 are 0.45, 0.2, 0.35, respectively.

(a) (b) (c)

(d) (e) (f)

Figure 4: (a) Schematics of the 21× 21 grid. An example trace: (b) The robot moves from the start
point and gets valuable data (VD) after crossing the Risky (Ri) state; (c) The robot uploads (Up) the
valuable data; (d) The robot picks up the first regular data (RD); (e) the robot uploads (Up) the first
regular data; (f) The robot picks up and uploads the second regular data.

4.3 Task specification and results
We consider the following mission, composed of three sub-tasks (with no restriction on the order):
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• Reach a location with ValuableData (VD), then reach Upload (Up);

• (repeat twice) Reach a location with RegularData (RD), then reach Upload (Up);

with the following requirements:

• Always avoid Unsafe (Un) regions;

• Do not reach Risky (Ri) regions unless directly preceding a location with ValuableData (VD);

• After getting either ValuableData (VD) or RegularData (RD), go to Upload (Up) before going
for another ValuableData (VD) or RegularData (RD).

The above task specification can be translated to the LTL formula:

φ := FVD ∧ F (RD ∧ XFRD)

∧G¬Un
∧G (Ri −→ XVD)

∧G
(

VD ∨ RD −→ X (¬(VD ∨ RD)UUP)
)
. (12)

Note that in (12), the first line corresponds to the mission specification, and the rest correspond to
the mission requirements as stated above.

We now show results of applying our algorithm for two scenarios, a 21 × 21 grid and a large
81×81 grid. We use the computational frameworks described in this paper to find the control strategy
maximizing the probabilities of satisfying the specification. For the 21 × 21 grid, we visualize a
movement of the robot under the policy calculated by our actor-critic method and verify that all task
specifications are satisfied. We also evaluate the time and memory usage of our algorithm with the
LP method in the 21 × 21 grid and the 81 × 81 grid, respectively. Compared with the LP method,
our algorithm uses much less time and memory for the 81× 81 grid scenario.

4.3.1 Results of a 21× 21 grid scenario

In this scenario, we use the scene settings described in Sec. 4.1. Fig. 4(a) plots the properties of
the states in the 21 × 21 grid using different colors (the legend shows the correspondence of the
properties and the colors). Fig. 4 also shows an example trace, i.e., a sequence of MDP states
generated by the actor-critic algorithm, to verify that the robot motion is indeed correct and satisfies
the mission specification and requirements. For convenience of visualization, we divide the example
trace into five segments, each segment verifying a subtask in our LTL formula. In Fig. 4(b-f),
paths of the robot are plotted as blue lines, and the turning directions of the robot are plotted as
arrows. The transparency of the arrows are associated with the timestamps of the turns. Turns with
smaller timestamps are plotted more transparently while turns with larger timestamps are plotted
less transparently. We map each MDP state to the current region of the robot. For example, the
MDP state R1-I3 corresponds to region I3 in the scene. The robot first moves from starting point
to pick up the valuable data (VD) after crossing the Risky (Ri) state (Fig. 4(b)). After that, the
robot uploads (Up) the valuable data (Fig. 4(c)). Later, the robot picks up the first regular data (RD)
(Fig. 4(d)) and uploads (Up) the first regular data (Fig. 4(e)). The robot eventually picks up and
uploads the second regular data (Fig. 4(f)).

In this case, the product MDP contains 22, 533 states. There are 1, 085 “goal” states and 10, 582
“trap” states as defined in Def. 3.9. Note that in order to solve the probability exactly using the LP
method, we need to compute transition probabilities for all 90, 132 state-action pairs. In our method,
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Figure 5: Reachability probability for the RSP as a function of the number of iterations applying the
proposed algorithm. The exact solution (max probability of satisfying the specification) is 1. The
RSP optimal solution is 0.98.

we only compute the transition probabilities along the sample path, which only consists of a very
small portion of the state space. By caching the transition probabilities of previous visited states, we
can furthermore reduce the computation cost for generating transition probabilities. We observe that
less than 5, 000 transition probabilities are needed during the simulation of the actor-critic algorithm.

The result of the LP method is a deterministic solution, which has been proved to be the exact
optimal solution over all policies. The satisfaction probability is 100%. Note that our actor-critic
algorithm optimizes θ over a set of parameterized RSPs to a local optimal solution. Note that
θ = [θ1, θ2] is a vector of parameters, where θ1 and θ2 are the weights for progress and safety,
respectively (cf. Eq. 10). If we assume the range of θ1 and θ2, and assume both θ1 and θ2 are
discrete values (generated by dividing the range equally), we can obtain a set of discrete values for
θ. We could use a brute force method to calculate the optimal solution within all possible values of
the discretized θ, which is referred to as RSP optimal solution. When discretization is fine enough,
we could treat the result of the brute force method as the global optimal solution within the set of
parameterized RSPs. In our case, we choose the difference of two consecutive discretized values
for both θ1 and θ2 to be 0.01. The RSP optimal solution for the 21 × 21 grid scenario has 98%
probability of satisfying the specification.

The difference between the exact optimal solution and the RSP optimal solution characterizes the
expressivity of the RSP structure we used. The difference of the result of the actor-critic algorithm
and the RSP optimal solution characterizes the effectiveness of the actor-critic algorithm in terms of
optimizing the RSP.

The graph of the convergence of the actor-critic solution is shown in Fig. 5. The parameters
for this examples are: λ = 0.9, and initial θ = [2.85, 100]T. The sensing radius r in the RSP is
2. The actor-critic algorithm converges after 20, 000 iterations to 85% reachability probability. Its
difference to exact and RSP optimal solutions is 15% and 13%, respectively.
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Figure 6: Schematics of the 81× 81 grid. The states with properties are plotted using corresponding
color (see legend for the correspondence of properties and colors).

4.3.2 Results of a 81× 81 grid scenario

The 81× 81 grid is shown in Fig. 6. The grid is created by concatenating 16 smaller 21× 21 grids
and merging the borders between the adjacent small grids. The states with properties are generated
randomly. In this scenario, the product MDP contains 359, 973 states. There are 19, 135 “goal”
states and 166, 128 “trap” states as defined in Def. 3.9. By applying the LP method, we calculate
the exact optimal solution and found a maximum satisfaction probability of 99%. The RSP optimal
solution leads to satisfaction probability of 92%.

The initial θ = [1, 110]T. The sensing radius r in the RSP is 2. The graph of the convergence of
the actor-critic solution is shown in Fig. 7. The actor-critic algorithm converges to 80% after 68, 000
iterations. Its difference to exact and RSP optimal solutions is 19% and 12%, respectively.

In Problem 3.10, the period cost is zero unless the states reaches S̄∗P , in which case the cost is
1. As a result, when S̄∗P is reached, the algorithm will receive a strong penalty (bad feedback) for
current policy thus make a big policy update, which results in the jumps of reachability probabilities
in Fig. 7.

Grid Size CPU Time (A-C) CPU Time (LP) Memory (A-C) Memory (LP)
21× 21 25 sec 6.3 sec ∼ 0.05G ∼ 0.10G
81× 81 56 sec 110.4 sec ∼ 0.22G ∼ 1.5G

Table 1: Comparison between our method and exact methods.

Finally, in order to demonstrate the usefulness of our approach, in Table 1 we compare the
computation time and memory needed to execute our algorithm versus using the CPLEX LP solver.
Both algorithms are run on a machine with 2.50GHz 4-core Intel i5 CPU and 2GB memory. Note

20



0 20 40 60 80 100
iterations (x1000)

0.0

0.2

0.4

0.6

0.8

1.0

re
ac

ha
bi

lit
y

pr
ob

ab
ili

ty

A-C
Exact optimal
RSP optimal

Figure 7: Reachability probability for the RSP as a function of the number of iterations for the large
environment. The exact solution (maximal probability of satisfying the specification) is 0.99. The
RSP optimal solution is 0.92.

that the time in the table does not include the time of calculating AMECs. For the 21 × 21 grid,
the LP method is faster. The actor-critic algorithm needs considerable number of iterations to learn
the correct parameters, even if the problem size is small, which makes it unfavorable for small
problems. However, the time required for the LP method increases rapidly when the problem size
increases, while the time for the actor-critic method only increases modestly. In the 81 × 81 grid,
the LP method takes about 2 times more CPU time than our algorithm. The actor-critic method also
uses much less memory than the LP method in both scenarios because only a small percentage of
transition probabilities needs to be stored in the actor-critic algorithm. For the 21 × 21 grid, this
percentage is only around 5%. Although actor-critic algorithm also needs to store some additional
information like progress and safety score, the overall memory usage is still smaller. The LP
method uses 15 times more memory in the 81 × 81 scenario than in the 21 × 21 scenario. At the
same time, the memory usage of our method only increases by 4 times. These results show that the
compared with the LP method, the actor-critic method is suitable for large-scale problems because
of its reduced time and space complexity.

5 Conclusions and Future Work
We presented a framework that brings together an approximate dynamic programming computa-
tional method of the actor-critic type, with formal control synthesis for Markov Decision Processes
(MDPs) from temporal logic specifications. We showed that this approach is particularly suitable for
problems where the transition probabilities of the MDP are difficult or computationally expensive
to compute, such as for many robotic applications. We demonstrated that this approach effectively
finds an approximate optimal policy within a class of randomized stationary polices maximizing the
probability of satisfying the temporal logic formula. Because our experiment setup is based on RIDE
platform, the results in this paper only focus on maze-like environment. However, the techniques
presented in this paper, including the conversion from MRP to SSP and the LSTD actor-critic algo-
rithm, are general and should work beyond RIDE as long as a label MDP can be properly defined in
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the environment. As a future work, we can evaluate our approach in more realistic environment, for
example city roads. In addition, the approach presented in this paper is designed for controlling one
robot. Another future work is to extend our approach to multi-robot teams.

Appendix: Convergence of the LSTD Actor-Critic Algorithm
We first cite the theory of linear stochastic approximation driven by a slowly varying Markov chain
(Konda, 2002) (with simplifications).

Let {yk} be a finite Markov chain whose transition probabilities pθ(·|·) depend on a parameter
θ ∈ Rn. Consider a generic iteration of the form

sk+1 = sk + γk(hθk(yk+1)−Gθk(yk+1)sk) + γkΞksk, (13)

where sk ∈ Rm, and hθ(·) ∈ Rm,Gθ(·) ∈ Rm×m are θ-parameterized vector and matrix functions,
respectively. We first present the following conditions.
Condtion 5.1. (1) The sequence {γk} is deterministic, non-increasing, and∑

k

γk =∞,
∑
k

γ2
k <∞.

(2) The random sequence {θk} satisfies ||θk+1 − θk|| ≤ βkHk for some process {Hk} with
bounded moments, where {βk} is a deterministic sequence such that

∑
k

(
βk
γk

)d
<∞ for some d > 0.

(3) Ξk is an m×m-matrix valued martingale difference with bounded moments.

(4) For each θ, there exist h̄(θ) ∈ Rm, Ḡ(θ) ∈ Rm×m, and corresponding m-vector and m×m-
matrix functions ĥθ(·), Ĝθ(·) that satisfy the Poisson equation. That is, for each y,

ĥθ(y) = hθ(y)− h̄(θ) +
∑
z

pθ(z|y)ĥθ(z),

Ĝθ(y) = Gθ(y)− Ḡ(θ) +
∑
z

pθ(z|y)Ĝθ(z).

Denote by Eθ[·] the expectation with respect to the stationary distribution of the finite Markov
chain {yk}, then Ḡ(θk) = Eθ[Gθk(y)] and h̄(θk) = Eθ[hθ(y)].

(5) For some constant C and for all θ, we have max(||h̄(θ)||, ||Ḡ(θ)||) ≤ C.

(6) For any d > 0, there exists Cd > 0 such that supk E[||fθk(yk)||d] ≤ Cd, where fθ(·) represents
any of the functions ĥθ(·), hθ(·), Ĝθ(·) and Gθ(·).

(7) For some constant C > 0 and for all θ, θ̄ ∈ Rn, max(||h̄(θ) − h̄(θ̄)||, ||Ḡ(θ) − Ḡ(θ̄)||) ≤
C||θ − θ̄||.

(8) There exists a positive measurable function C(·) such that for every d > 0, supk E[C(yk)d] <
∞, and ||fθ(y)− fθ̄(y)|| ≤ C(y)||θ − θ̄||.
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(9) There exists a > 0 such that for all s ∈ Rm and θ ∈ Rn

s′Ḡ(θ)s ≥ a||s||2.

It has been shown in (Konda, 2002) that the critic in (13) converges if Condition 5.1(1-9) are
met.
Theorem 5.2. [Convergence of Linear Stochastic Approximation] If Condition 5.1(1-9) are satis-
fied, then

lim
k→∞

|Ḡ(θk)sk − h̄(θk)| = 0. (14)

Proof. See Chapter 3 of (Konda, 2002).

Based on Theorem 5.2, we present the convergence of the critic in Alg. 1 in the following
theorem.
Theorem 5.3. [Critic Convergence] For the LSTD actor-critic method described in Alg. 1 with some
deterministic and non-increasing step-size sequences {βk}, {γk} satisfying:∑

k

βk =∞,
∑
k

β2
k <∞, lim

k→∞

βk
γk

= 0, (15)

the sequence sk is bounded, and

lim
k→∞

|bk − Eθ[g(x, u)z)]| = 0,

lim
k→∞

|v(Ak)− Eθ[v
(
z((Pθψ

′
θ)(x, u)−ψ′θ(x, u))

)
]| = 0,

whereEθ[·] is the expectation with respect to the stationary distribution of the Markov chain {xk, uk, zk},
and for any matrix A, v(A) is a column vector that stacks all row vectors of A (also written as col-
umn vectors).

Proof. Simple algebra suggests that the critic update in Alg. 1 can be written as the form of (13)
with

sk =

 bk
v(Ak)

1

 , yk = (xk, uk, zk),

hθ(y) =

 g(x, u)z
v(z((Pθψ

′
θ)(x, u)−ψ′θ(x, u)))

1

 ,
Gθ(y) =

[
I
]
,

(16)

Ξk =

 0 0 0
0 0 Dk

0 0 0

 ,
where Ak, bk, xk, uk, and zk are the iterates defined in Alg. 1, y = (x, u, z) denotes a value of the
triplet yk, and Dk = v(zk(ψ′θk(xk+1, uk+1)− (Pθψθ)′(xk, uk))).

The step-sizes γk and βk in Alg. 1 correspond exactly to the γk and βk in Condition 5.1.(1) and
5.1.(2), respectively. For MDPs with finite state and action space, Condition 5.1.(1-2) reduces to
(15).
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A direct yet verbose way to prove the theorem is to verify Conditions 5.1.(3)-(9). However, a
comparison with the convergence proof for the TD(λ) critic in (Konda and Tsitsiklis, 2003) gives a
simpler proof. Let

Fθ(y) = z(ψ′θ(x, u)− (Pθψθ)′(x, u)).

While proving the convergence of TD(λ) critic operating concurrently with the actor, (Konda and
Tsitsiklis, 2003) showed that

h̃θ(y) =

[
h̃

(1)
θ (y)

h̃
(2)
θ (y)

]
=

[
Mg(x, u)
g(x, u)z

]
, (17)

G̃θ(y) =

[
1 0

z/M Fθ(y)

]
, (18)

and

Ξ̃k =

[
0 0
0 v

(
zk(ψ′θk(xk+1, uk+1)− (Pθψθ)′(xk, uk))

) ] (19)

satisfy Condition 5.1.(3)-5.1(8). M in (17) and (18) is an arbitrary (large) positive constant whose
role is to facilitate the convergence proof. In our case, (16) can be rewritten as

hθ(y) =

 h̃
(2)
θ (y)

−v (Fθ(y))
1

 , Gθ(y) =
[

I
]
, Ξk =

[
Ξ̃k

0

]
. (20)

Note that although hθ(y), Gθ(y), and Ξk in (20) are very different from h̃θ(y), G̃θ(y), and Ξ̃k in
(17), (18) and (19), they involve the same quantities and both in a linear fashion. So, hθ(·),Gθ(·)
and Ξk also satisfy conditions 5.1.(3)-5.1(8). Meanwhile, the step-size {γk} satisfies condition
5.1.(1), and the step-size {βk} satisfies Eq. (15) (which is as explained above implies condition
5.1.(2)). Now, only condition 5.1.(9) remains to be checked. To that end, note that all diagonal
elements of Gθ(y) equal to one, so, Gθ(y) is positive definite. This proves the convergence. Using
the same correspondence and the result in (Konda and Tsitsiklis, 2003), one can further check that
(14) also holds here. The theorem can be proved by substituting (16) to (14) and using the fact that
Ḡ(θk) = Eθ[Gθk(y)] and h̄(θk) = Eθ[hθ(y)].

Theorem 5.3 states that the critic step in Alg. 1 can converge to the optimal r. In addition, note
that λ in Step 6 of Alg 1 is a declay factor used in Sutton’s eligibility trace, and has been applied
in other approximate dynamic programming methods like TD(λ) (Sutton and Barto, 1998). For
any sequence {ck}, let lim infk→∞ ck = limk→∞ inf{cm : m ≥ k}. Then the following theorem
establishes the convergence for the actor step of Alg. 1.
Theorem 5.4. [Actor Convergence] For the LSTD actor-critic algorithm (Alg. 1) with some step-
size sequence {βk} satisfying (15), for any ε > 0, there exists some λ sufficiently close to 1, such that
lim infk→∞ ||∇ᾱ(θk)|| < ε w.p.1. That is, θk visits an arbitrary neighborhood of a stationary point
infinitely often.

Proof. Since critic convergence has been proved (cf. Theorem 5.3), the result follows by setting
φθ = ψθ and following the proof in Sec. 6 of (Konda and Tsitsiklis, 2003).
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